Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/VarianceAccountedForEvaluator.cs @ 479

Last change on this file since 479 was 479, checked in by gkronber, 16 years ago

implemented #242 (All GP evaluators should support the 'UseEstimatedTargetValues' switch for autoregressive modelling).
Also used the chance to remove a lot of the code duplication and thus improve the readability of all GP evaluators.

File size: 2.9 KB
RevLine 
[2]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.DataAnalysis;
30using HeuristicLab.Functions;
31
32namespace HeuristicLab.StructureIdentification {
[128]33  public class VarianceAccountedForEvaluator : GPEvaluatorBase {
[2]34    public override string Description {
[128]35      get {
[155]36        return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates
[2]37the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
38
39The Variance Accounted For (VAF) function is computed as
40VAF(y,y') = ( 1 - var(y-y')/var(y) )
[128]41where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
42      }
[2]43    }
44
45    /// <summary>
46    /// The Variance Accounted For (VAF) function calculates is computed as
47    /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
48    /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
49    /// </summary>
50    public VarianceAccountedForEvaluator()
51      : base() {
52    }
53
54
[479]55    public override double Evaluate(int start, int end) {
56      int nSamples = end - start;
57      double[] errors = new double[nSamples];
58      double[] originalTargetVariableValues = new double[nSamples];
59      for(int sample = start; sample < end; sample++) {
60        double estimated = GetEstimatedValue(sample);
61        double original = GetOriginalValue(sample);
[2]62        if(!double.IsNaN(original) && !double.IsInfinity(original)) {
[479]63          errors[sample - start] = original - estimated;
64          originalTargetVariableValues[sample - start] = original;
[2]65        }
66      }
67      double errorsVariance = Statistics.Variance(errors);
68      double originalsVariance = Statistics.Variance(originalTargetVariableValues);
69      double quality = 1 - errorsVariance / originalsVariance;
70
71      if(double.IsNaN(quality) || double.IsInfinity(quality)) {
72        quality = double.MaxValue;
73      }
[128]74      return quality;
[2]75    }
76  }
77}
Note: See TracBrowser for help on using the repository browser.