1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 | using HeuristicLab.Functions;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class VarianceAccountedForEvaluator : GPEvaluatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get {
|
---|
36 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates
|
---|
37 | the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
|
---|
38 |
|
---|
39 | The Variance Accounted For (VAF) function is computed as
|
---|
40 | VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
41 | where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
|
---|
42 | }
|
---|
43 | }
|
---|
44 |
|
---|
45 | /// <summary>
|
---|
46 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
47 | /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
48 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
49 | /// </summary>
|
---|
50 | public VarianceAccountedForEvaluator()
|
---|
51 | : base() {
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
56 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
57 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
58 | double[] errors = new double[trainingEnd-trainingStart];
|
---|
59 | double[] originalTargetVariableValues = new double[trainingEnd-trainingStart];
|
---|
60 | double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
|
---|
61 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
62 | double estimated = evaluator.Evaluate(sample);
|
---|
63 | double original = dataset.GetValue(sample, targetVariable);
|
---|
64 | if(!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
65 | if(double.IsNaN(estimated) || double.IsInfinity(estimated))
|
---|
66 | estimated = targetMean + maximumPunishment;
|
---|
67 | else if(estimated > (targetMean + maximumPunishment))
|
---|
68 | estimated = targetMean + maximumPunishment;
|
---|
69 | else if(estimated < (targetMean - maximumPunishment))
|
---|
70 | estimated = targetMean - maximumPunishment;
|
---|
71 | }
|
---|
72 |
|
---|
73 | errors[sample-trainingStart] = original - estimated;
|
---|
74 | originalTargetVariableValues[sample-trainingStart] = original;
|
---|
75 | }
|
---|
76 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd-trainingStart);
|
---|
77 |
|
---|
78 | double errorsVariance = Statistics.Variance(errors);
|
---|
79 | double originalsVariance = Statistics.Variance(originalTargetVariableValues);
|
---|
80 | double quality = 1 - errorsVariance / originalsVariance;
|
---|
81 |
|
---|
82 | if(double.IsNaN(quality) || double.IsInfinity(quality)) {
|
---|
83 | quality = double.MaxValue;
|
---|
84 | }
|
---|
85 | return quality;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|