Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/VarianceAccountedForEvaluator.cs @ 400

Last change on this file since 400 was 400, checked in by gkronber, 16 years ago

fixed #156 (All GP-evaluators should update the number of total evaluated nodes)

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.DataAnalysis;
30using HeuristicLab.Functions;
31
32namespace HeuristicLab.StructureIdentification {
33  public class VarianceAccountedForEvaluator : GPEvaluatorBase {
34    public override string Description {
35      get {
36        return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates
37the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
38
39The Variance Accounted For (VAF) function is computed as
40VAF(y,y') = ( 1 - var(y-y')/var(y) )
41where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
42      }
43    }
44
45    /// <summary>
46    /// The Variance Accounted For (VAF) function calculates is computed as
47    /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
48    /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
49    /// </summary>
50    public VarianceAccountedForEvaluator()
51      : base() {
52    }
53
54
55    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
56      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
57      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
58      double[] errors = new double[trainingEnd-trainingStart];
59      double[] originalTargetVariableValues = new double[trainingEnd-trainingStart];
60      double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
61      for(int sample = trainingStart; sample < trainingEnd; sample++) {
62        double estimated = evaluator.Evaluate(sample);
63        double original = dataset.GetValue(sample, targetVariable);
64        if(!double.IsNaN(original) && !double.IsInfinity(original)) {
65          if(double.IsNaN(estimated) || double.IsInfinity(estimated))
66            estimated = targetMean + maximumPunishment;
67          else if(estimated > (targetMean + maximumPunishment))
68            estimated = targetMean + maximumPunishment;
69          else if(estimated < (targetMean - maximumPunishment))
70            estimated = targetMean - maximumPunishment;
71        }
72
73        errors[sample-trainingStart] = original - estimated;
74        originalTargetVariableValues[sample-trainingStart] = original;
75      }
76      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd-trainingStart);
77
78      double errorsVariance = Statistics.Variance(errors);
79      double originalsVariance = Statistics.Variance(originalTargetVariableValues);
80      double quality = 1 - errorsVariance / originalsVariance;
81
82      if(double.IsNaN(quality) || double.IsInfinity(quality)) {
83        quality = double.MaxValue;
84      }
85      return quality;
86    }
87  }
88}
Note: See TracBrowser for help on using the repository browser.