[1413] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 |
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.SimOpt {
|
---|
| 31 | public class SimOptSelfAdaptiveNumericVectorProbabilityMutation : OperatorBase {
|
---|
| 32 |
|
---|
| 33 | public override string Description {
|
---|
| 34 | get { return @"Takes the values of a strategy vectors as possibilities to manipulate a certain dimension in the parameter vector"; }
|
---|
| 35 | }
|
---|
| 36 |
|
---|
| 37 | public SimOptSelfAdaptiveNumericVectorProbabilityMutation()
|
---|
| 38 | : base() {
|
---|
| 39 | AddVariableInfo(new VariableInfo("Random", "The random number generator", typeof(IRandom), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("Probabilities", "The probability vector", typeof(DoubleArrayData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("Items", "The parameter vector", typeof(ConstrainedItemList), VariableKind.In | VariableKind.Out));
|
---|
| 42 | AddVariableInfo(new VariableInfo("MaxVector", "Vector containing the maximum values", typeof(DoubleArrayData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("MinVector", "Vector containing the minimum values", typeof(DoubleArrayData), VariableKind.In));
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public override IOperation Apply(IScope scope) {
|
---|
| 47 | IRandom random = GetVariableValue<IRandom>("Random", scope, true);
|
---|
| 48 | DoubleArrayData max = GetVariableValue<DoubleArrayData>("MaxVector", scope, true);
|
---|
| 49 | DoubleArrayData min = GetVariableValue<DoubleArrayData>("MinVector", scope, true);
|
---|
| 50 | DoubleArrayData probs = GetVariableValue<DoubleArrayData>("Probabilities", scope, false);
|
---|
| 51 |
|
---|
| 52 | ConstrainedItemList parameters = GetVariableValue<ConstrainedItemList>("Items", scope, false);
|
---|
| 53 | int tries;
|
---|
| 54 | ConstrainedItemList temp = null;
|
---|
| 55 | ICollection<IConstraint> tmp;
|
---|
| 56 |
|
---|
| 57 | for (tries = 0; tries < 100; tries++) {
|
---|
| 58 | temp = (ConstrainedItemList)parameters.Clone();
|
---|
| 59 |
|
---|
| 60 | temp.BeginCombinedOperation();
|
---|
| 61 | for (int i = 0; i < temp.Count; i++) {
|
---|
| 62 | if (random.NextDouble() < probs.Data[i % probs.Data.Length]) {
|
---|
| 63 | if (((Variable)temp[i]).Value is IntData) {
|
---|
| 64 | ((IntData)((Variable)temp[i]).Value).Data = random.Next((int)Math.Floor(min.Data[i % min.Data.Length]), (int)Math.Ceiling(max.Data[i % max.Data.Length]));
|
---|
| 65 | } else if (((Variable)temp[i]).Value is DoubleData) {
|
---|
| 66 | ((DoubleData)((Variable)temp[i]).Value).Data = min.Data[i] + (max.Data[i % max.Data.Length] - min.Data[i % min.Data.Length]) * random.NextDouble();
|
---|
| 67 | } else if (((Variable)temp[i]).Value is ConstrainedIntData) {
|
---|
| 68 | ((ConstrainedIntData)((Variable)temp[i]).Value).TrySetData(random.Next((int)Math.Floor(min.Data[i % min.Data.Length]), (int)Math.Ceiling(max.Data[i % max.Data.Length])));
|
---|
| 69 | } else if (((Variable)temp[i]).Value is ConstrainedDoubleData) {
|
---|
| 70 | ((ConstrainedDoubleData)((Variable)temp[i]).Value).TrySetData(min.Data[i % min.Data.Length] + (max.Data[i % max.Data.Length] - min.Data[i % min.Data.Length]) * random.NextDouble());
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | }
|
---|
| 74 | if (temp.EndCombinedOperation(out tmp)) break;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | if (tries < 100) {
|
---|
| 78 | parameters.BeginCombinedOperation();
|
---|
| 79 | for (int i = 0; i < temp.Count; i++)
|
---|
| 80 | parameters.TrySetAt(i, temp[i], out tmp);
|
---|
| 81 | parameters.EndCombinedOperation(out tmp);
|
---|
| 82 | } else throw new InvalidOperationException("ERROR in SimOptSelfAdaptiveNumericVectorProbabilityMutation: no feasible result in 100 tries");
|
---|
| 83 |
|
---|
| 84 | return null;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | }
|
---|