1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
29 | public class SpatialCoevolution : ArtificialRegressionDataDescriptor {
|
---|
30 |
|
---|
31 | public override string Name { get { return "Spatial co-evolution F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))"; } }
|
---|
32 | public override string Description {
|
---|
33 | get {
|
---|
34 | return "Paper: Evolutionary consequences of coevolving targets" + Environment.NewLine
|
---|
35 | + "Authors: Ludo Pagie and Paulien Hogeweg" + Environment.NewLine
|
---|
36 | + "Function: F(x,y) = 1/(1 + x^(-4)) + 1/(1 + y^(-4))" + Environment.NewLine
|
---|
37 | + "Non-terminals: +, -, *, % (protected division), sin, cos, exp, ln(|x|) (protected log)" + Environment.NewLine
|
---|
38 | + "Terminals: only variables (no random constants)" + Environment.NewLine
|
---|
39 | + "The fitness of a solution is defined as the mean of the absolute differences between "
|
---|
40 | + "the target function and the solution over all problems on the basis of which it is evaluated. "
|
---|
41 | + "A solution is considered completely ’correct’ if, for all 676 problems in the ’complete’ "
|
---|
42 | + "problem set used in the static evaluation scheme, the absolute difference between "
|
---|
43 | + "solution and target function is less than 0.01 (this is a so-called hit).";
|
---|
44 | }
|
---|
45 | }
|
---|
46 | protected override string TargetVariable { get { return "F"; } }
|
---|
47 | protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
|
---|
48 | protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
|
---|
49 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
50 | protected override int TrainingPartitionEnd { get { return 676; } }
|
---|
51 | protected override int TestPartitionStart { get { return 676; } }
|
---|
52 | protected override int TestPartitionEnd { get { return 1676; } }
|
---|
53 | public int Seed { get; private set; }
|
---|
54 |
|
---|
55 | public SpatialCoevolution() : this((int)DateTime.Now.Ticks) { }
|
---|
56 |
|
---|
57 | public SpatialCoevolution(int seed) : base() {
|
---|
58 | Seed = seed;
|
---|
59 | }
|
---|
60 | protected override List<List<double>> GenerateValues() {
|
---|
61 | List<List<double>> data = new List<List<double>>();
|
---|
62 |
|
---|
63 | List<double> evenlySpacedSequence = SequenceGenerator.GenerateSteps(-5, 5, 0.4m).Select(v => (double)v).ToList();
|
---|
64 | List<List<double>> trainingData = new List<List<double>>() { evenlySpacedSequence, evenlySpacedSequence };
|
---|
65 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(trainingData).ToList();
|
---|
66 | var rand = new MersenneTwister((uint)Seed);
|
---|
67 |
|
---|
68 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
69 | data.Add(combinations[i].ToList());
|
---|
70 | data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), 1000, -5, 5).ToList());
|
---|
71 | }
|
---|
72 |
|
---|
73 | double x, y;
|
---|
74 | List<double> results = new List<double>();
|
---|
75 | for (int i = 0; i < data[0].Count; i++) {
|
---|
76 | x = data[0][i];
|
---|
77 | y = data[1][i];
|
---|
78 | results.Add(1 / (1 + Math.Pow(x, -4)) + 1 / (1 + Math.Pow(y, -4)));
|
---|
79 | }
|
---|
80 | data.Add(results);
|
---|
81 |
|
---|
82 | return data;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | }
|
---|