[6588] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6588] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Optimization;
|
---|
| 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 29 | [StorableClass]
|
---|
| 30 | public abstract class RegressionSolutionBase : DataAnalysisSolution, IRegressionSolution {
|
---|
| 31 | private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
| 32 | private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
[6643] | 33 | private const string TrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)";
|
---|
| 34 | private const string TestMeanAbsoluteErrorResultName = "Mean absolute error (test)";
|
---|
[6588] | 35 | private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
|
---|
| 36 | private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
|
---|
| 37 | private const string TrainingRelativeErrorResultName = "Average relative error (training)";
|
---|
| 38 | private const string TestRelativeErrorResultName = "Average relative error (test)";
|
---|
| 39 | private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
|
---|
| 40 | private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
|
---|
[7272] | 41 | private const string TrainingMeanErrorResultName = "Mean error (training)";
|
---|
| 42 | private const string TestMeanErrorResultName = "Mean error (test)";
|
---|
[6588] | 43 |
|
---|
| 44 | public new IRegressionModel Model {
|
---|
| 45 | get { return (IRegressionModel)base.Model; }
|
---|
| 46 | protected set { base.Model = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public new IRegressionProblemData ProblemData {
|
---|
| 50 | get { return (IRegressionProblemData)base.ProblemData; }
|
---|
[6653] | 51 | set { base.ProblemData = value; }
|
---|
[6588] | 52 | }
|
---|
| 53 |
|
---|
| 54 | public abstract IEnumerable<double> EstimatedValues { get; }
|
---|
| 55 | public abstract IEnumerable<double> EstimatedTrainingValues { get; }
|
---|
| 56 | public abstract IEnumerable<double> EstimatedTestValues { get; }
|
---|
| 57 | public abstract IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows);
|
---|
| 58 |
|
---|
| 59 | #region Results
|
---|
| 60 | public double TrainingMeanSquaredError {
|
---|
| 61 | get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
|
---|
| 62 | private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 63 | }
|
---|
| 64 | public double TestMeanSquaredError {
|
---|
| 65 | get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
|
---|
| 66 | private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 67 | }
|
---|
[6643] | 68 | public double TrainingMeanAbsoluteError {
|
---|
| 69 | get { return ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 70 | private set { ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 71 | }
|
---|
| 72 | public double TestMeanAbsoluteError {
|
---|
| 73 | get { return ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 74 | private set { ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 75 | }
|
---|
[6588] | 76 | public double TrainingRSquared {
|
---|
| 77 | get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
|
---|
| 78 | private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 79 | }
|
---|
| 80 | public double TestRSquared {
|
---|
| 81 | get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
|
---|
| 82 | private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 83 | }
|
---|
| 84 | public double TrainingRelativeError {
|
---|
| 85 | get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
|
---|
| 86 | private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
|
---|
| 87 | }
|
---|
| 88 | public double TestRelativeError {
|
---|
| 89 | get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
|
---|
| 90 | private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
|
---|
| 91 | }
|
---|
| 92 | public double TrainingNormalizedMeanSquaredError {
|
---|
| 93 | get { return ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 94 | private set { ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 95 | }
|
---|
| 96 | public double TestNormalizedMeanSquaredError {
|
---|
| 97 | get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 98 | private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 99 | }
|
---|
[7272] | 100 | public double TrainingMeanError {
|
---|
| 101 | get { return ((DoubleValue)this[TrainingMeanErrorResultName].Value).Value; }
|
---|
| 102 | private set { ((DoubleValue)this[TrainingMeanErrorResultName].Value).Value = value; }
|
---|
| 103 | }
|
---|
| 104 | public double TestMeanError {
|
---|
| 105 | get { return ((DoubleValue)this[TestMeanErrorResultName].Value).Value; }
|
---|
| 106 | private set { ((DoubleValue)this[TestMeanErrorResultName].Value).Value = value; }
|
---|
| 107 | }
|
---|
[6588] | 108 | #endregion
|
---|
| 109 |
|
---|
| 110 | [StorableConstructor]
|
---|
| 111 | protected RegressionSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
| 112 | protected RegressionSolutionBase(RegressionSolutionBase original, Cloner cloner)
|
---|
| 113 | : base(original, cloner) {
|
---|
| 114 | }
|
---|
| 115 | protected RegressionSolutionBase(IRegressionModel model, IRegressionProblemData problemData)
|
---|
| 116 | : base(model, problemData) {
|
---|
| 117 | Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
| 118 | Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
[6643] | 119 | Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
|
---|
| 120 | Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
|
---|
[6588] | 121 | Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
|
---|
| 122 | Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
|
---|
| 123 | Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new PercentValue()));
|
---|
| 124 | Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new PercentValue()));
|
---|
| 125 | Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleValue()));
|
---|
| 126 | Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleValue()));
|
---|
[7272] | 127 | Add(new Result(TrainingMeanErrorResultName, "Mean of errors of the model on the training partition", new DoubleValue()));
|
---|
| 128 | Add(new Result(TestMeanErrorResultName, "Mean of errors of the model on the test partition", new DoubleValue()));
|
---|
[6588] | 129 | }
|
---|
| 130 |
|
---|
[6643] | 131 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 132 | private void AfterDeserialization() {
|
---|
| 133 | // BackwardsCompatibility3.4
|
---|
| 134 |
|
---|
| 135 | #region Backwards compatible code, remove with 3.5
|
---|
| 136 |
|
---|
| 137 | if (!ContainsKey(TrainingMeanAbsoluteErrorResultName)) {
|
---|
| 138 | OnlineCalculatorError errorState;
|
---|
| 139 | Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
|
---|
[8139] | 140 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices), out errorState);
|
---|
[6643] | 141 | TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | if (!ContainsKey(TestMeanAbsoluteErrorResultName)) {
|
---|
| 145 | OnlineCalculatorError errorState;
|
---|
| 146 | Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
|
---|
[8139] | 147 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices), out errorState);
|
---|
[6643] | 148 | TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 149 | }
|
---|
[7272] | 150 |
|
---|
| 151 | if (!ContainsKey(TrainingMeanErrorResultName)) {
|
---|
| 152 | OnlineCalculatorError errorState;
|
---|
| 153 | Add(new Result(TrainingMeanErrorResultName, "Mean of errors of the model on the training partition", new DoubleValue()));
|
---|
[8139] | 154 | double trainingME = OnlineMeanErrorCalculator.Calculate(EstimatedTrainingValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices), out errorState);
|
---|
[7272] | 155 | TrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
|
---|
| 156 | }
|
---|
| 157 | if (!ContainsKey(TestMeanErrorResultName)) {
|
---|
| 158 | OnlineCalculatorError errorState;
|
---|
| 159 | Add(new Result(TestMeanErrorResultName, "Mean of errors of the model on the test partition", new DoubleValue()));
|
---|
[8139] | 160 | double testME = OnlineMeanErrorCalculator.Calculate(EstimatedTestValues, ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices), out errorState);
|
---|
[7272] | 161 | TestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
|
---|
| 162 | }
|
---|
[6643] | 163 | #endregion
|
---|
| 164 | }
|
---|
| 165 |
|
---|
[6588] | 166 | protected void CalculateResults() {
|
---|
[7735] | 167 | IEnumerable<double> estimatedTrainingValues = EstimatedTrainingValues; // cache values
|
---|
[8139] | 168 | IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
[7735] | 169 | IEnumerable<double> estimatedTestValues = EstimatedTestValues; // cache values
|
---|
[8139] | 170 | IEnumerable<double> originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
[6588] | 171 |
|
---|
| 172 | OnlineCalculatorError errorState;
|
---|
[6961] | 173 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 174 | TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
[6961] | 175 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 176 | TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 177 |
|
---|
[6961] | 178 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6643] | 179 | TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
[6961] | 180 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6643] | 181 | TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 182 |
|
---|
[6961] | 183 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 184 | TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
[6961] | 185 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 186 | TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
| 187 |
|
---|
[6961] | 188 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 189 | TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
[6961] | 190 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 191 | TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 192 |
|
---|
[6961] | 193 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[6588] | 194 | TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
[6961] | 195 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[6588] | 196 | TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
[7272] | 197 |
|
---|
| 198 | double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 199 | TrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
|
---|
| 200 | double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 201 | TestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
|
---|
[6588] | 202 | }
|
---|
| 203 | }
|
---|
| 204 | }
|
---|