source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Controls/PartialDependencePlot.cs @ 15222

Last change on this file since 15222 was 15222, checked in by mkommend, 2 years ago

#2807: Removed obsolete comments from partial dependence plots.

File size: 27.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections;
24using System.Collections.Generic;
25using System.Drawing;
26using System.Globalization;
27using System.Linq;
28using System.Threading;
29using System.Threading.Tasks;
30using System.Windows.Forms;
31using System.Windows.Forms.DataVisualization.Charting;
32using HeuristicLab.Common;
33using HeuristicLab.MainForm.WindowsForms;
34using HeuristicLab.Visualization.ChartControlsExtensions;
35
36namespace HeuristicLab.Problems.DataAnalysis.Views {
37  public partial class PartialDependencePlot : UserControl, IPartialDependencePlot {
38    private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
39    private ModifiableDataset internalDataset; // holds the x values for each point drawn
40
41    private CancellationTokenSource cancelCurrentRecalculateSource;
42
43    private readonly List<IRegressionSolution> solutions;
44    private readonly Dictionary<IRegressionSolution, Series> seriesCache;
45    private readonly Dictionary<IRegressionSolution, Series> ciSeriesCache;
46
47    private readonly ToolStripMenuItem configToolStripMenuItem;
48    private readonly PartialDependencePlotConfigurationDialog configurationDialog;
49
50    #region Properties
51    public string XAxisTitle {
52      get { return chart.ChartAreas[0].AxisX.Title; }
53      set { chart.ChartAreas[0].AxisX.Title = value; }
54    }
55
56    public string YAxisTitle {
57      get { return chart.ChartAreas[0].AxisY.Title; }
58      set { chart.ChartAreas[0].AxisY.Title = value; }
59    }
60
61    public bool ShowLegend {
62      get { return chart.Legends[0].Enabled; }
63      set { chart.Legends[0].Enabled = value; }
64    }
65    public bool ShowCursor {
66      get { return chart.Annotations[0].Visible; }
67      set {
68        chart.Annotations[0].Visible = value;
69        if (!value) chart.Titles[0].Text = string.Empty;
70      }
71    }
72
73    public bool ShowConfigButton {
74      get { return configurationButton.Visible; }
75      set { configurationButton.Visible = value; }
76    }
77
78    private int xAxisTicks = 5;
79    public int XAxisTicks {
80      get { return xAxisTicks; }
81      set {
82        if (value != xAxisTicks) {
83          xAxisTicks = value;
84          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
85          RecalculateInternalDataset();
86        }
87      }
88    }
89    private double? fixedXAxisMin;
90    public double? FixedXAxisMin {
91      get { return fixedXAxisMin; }
92      set {
93        if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) {
94          fixedXAxisMin = value;
95          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
96          RecalculateInternalDataset();
97          // set the vertical line position
98          if (VerticalLineAnnotation.X <= fixedXAxisMin) {
99            var axisX = chart.ChartAreas[0].AxisX;
100            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
101            VerticalLineAnnotation.X = axisX.Minimum + step;
102          }
103        }
104      }
105    }
106    private double? fixedXAxisMax;
107    public double? FixedXAxisMax {
108      get { return fixedXAxisMax; }
109      set {
110        if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) {
111          fixedXAxisMax = value;
112          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
113          RecalculateInternalDataset();
114          // set the vertical line position
115          if (VerticalLineAnnotation.X >= fixedXAxisMax) {
116            var axisX = chart.ChartAreas[0].AxisX;
117            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
118            VerticalLineAnnotation.X = axisX.Maximum - step;
119          }
120        }
121      }
122    }
123
124    private int yAxisTicks = 5;
125    public int YAxisTicks {
126      get { return yAxisTicks; }
127      set {
128        if (value != yAxisTicks) {
129          yAxisTicks = value;
130          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
131          RecalculateInternalDataset();
132        }
133      }
134    }
135    private double? fixedYAxisMin;
136    public double? FixedYAxisMin {
137      get { return fixedYAxisMin; }
138      set {
139        if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
140          fixedYAxisMin = value;
141          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
142        }
143      }
144    }
145    private double? fixedYAxisMax;
146    public double? FixedYAxisMax {
147      get { return fixedYAxisMax; }
148      set {
149        if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
150          fixedYAxisMax = value;
151          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
152        }
153      }
154    }
155
156    private double trainingMin = -1;
157    private double trainingMax = 1;
158
159    private int drawingSteps = 1000;
160    public int DrawingSteps {
161      get { return drawingSteps; }
162      set {
163        if (value != drawingSteps) {
164          drawingSteps = value;
165          RecalculateInternalDataset();
166          ResizeAllSeriesData();
167        }
168      }
169    }
170
171    private string freeVariable;
172    public string FreeVariable {
173      get { return freeVariable; }
174      set {
175        if (value == freeVariable) return;
176        if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
177          throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
178        }
179        freeVariable = value;
180        RecalculateInternalDataset();
181      }
182    }
183
184    private double yMin;
185    public double YMin {
186      get { return yMin; }
187    }
188    private double yMax;
189    public double YMax {
190      get { return yMax; }
191    }
192
193    public bool IsZoomed {
194      get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; }
195    }
196
197    private VerticalLineAnnotation VerticalLineAnnotation {
198      get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
199    }
200
201    internal ElementPosition InnerPlotPosition {
202      get { return chart.ChartAreas[0].InnerPlotPosition; }
203    }
204    #endregion
205
206    public event EventHandler ChartPostPaint;
207
208    public PartialDependencePlot() {
209      InitializeComponent();
210
211      solutions = new List<IRegressionSolution>();
212      seriesCache = new Dictionary<IRegressionSolution, Series>();
213      ciSeriesCache = new Dictionary<IRegressionSolution, Series>();
214
215      // Configure axis
216      chart.CustomizeAllChartAreas();
217      chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
218      chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
219      chart.ChartAreas[0].CursorX.Interval = 0;
220
221      chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
222      chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
223      chart.ChartAreas[0].CursorY.Interval = 0;
224
225      configToolStripMenuItem = new ToolStripMenuItem("Configuration");
226      configToolStripMenuItem.Click += config_Click;
227      chart.ContextMenuStrip.Items.Add(new ToolStripSeparator());
228      chart.ContextMenuStrip.Items.Add(configToolStripMenuItem);
229      configurationDialog = new PartialDependencePlotConfigurationDialog(this);
230
231      Disposed += Control_Disposed;
232    }
233
234    private void Control_Disposed(object sender, EventArgs e) {
235      if (cancelCurrentRecalculateSource != null)
236        cancelCurrentRecalculateSource.Cancel();
237    }
238
239    public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) {
240      if (!SolutionsCompatible(solutions))
241        throw new ArgumentException("Solutions are not compatible with the problem data.");
242      this.freeVariable = freeVariable;
243      this.drawingSteps = drawingSteps;
244
245      this.solutions.Clear();
246      this.solutions.AddRange(solutions);
247
248      // add an event such that whenever a value is changed in the shared dataset,
249      // this change is reflected in the internal dataset (where the value becomes a whole column)
250      if (this.sharedFixedVariables != null)
251        this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
252      this.sharedFixedVariables = sharedFixedVariables;
253      this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
254
255      RecalculateTrainingLimits(initializeAxisRanges);
256      RecalculateInternalDataset();
257
258      chart.Series.Clear();
259      seriesCache.Clear();
260      ciSeriesCache.Clear();
261      foreach (var solution in this.solutions) {
262        var series = CreateSeries(solution);
263        seriesCache.Add(solution, series.Item1);
264        if (series.Item2 != null)
265          ciSeriesCache.Add(solution, series.Item2);
266      }
267
268      // Set cursor and x-axis
269      // Make sure to allow a small offset to be able to distinguish the vertical line annotation from the axis
270      var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
271      var step = (trainingMax - trainingMin) / drawingSteps;
272      var minimum = chart.ChartAreas[0].AxisX.Minimum;
273      var maximum = chart.ChartAreas[0].AxisX.Maximum;
274      if (defaultValue <= minimum)
275        VerticalLineAnnotation.X = minimum + step;
276      else if (defaultValue >= maximum)
277        VerticalLineAnnotation.X = maximum - step;
278      else
279        VerticalLineAnnotation.X = defaultValue;
280
281      if (ShowCursor)
282        chart.Titles[0].Text = FreeVariable + " : " + defaultValue.ToString("G5", CultureInfo.CurrentCulture);
283
284      ResizeAllSeriesData();
285      OrderAndColorSeries();
286    }
287
288    public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
289      if (IsDisposed
290        || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
291        || trainingMin > trainingMax || drawingSteps == 0)
292        return;
293
294      calculationPendingTimer.Start();
295
296      // cancel previous recalculate call
297      if (cancelCurrentRecalculateSource != null)
298        cancelCurrentRecalculateSource.Cancel();
299      cancelCurrentRecalculateSource = new CancellationTokenSource();
300      var cancellationToken = cancelCurrentRecalculateSource.Token;
301
302      // Update series
303      try {
304        var limits = await UpdateAllSeriesDataAsync(cancellationToken);
305        chart.Invalidate();
306
307        yMin = limits.Lower;
308        yMax = limits.Upper;
309        // Set y-axis
310        if (resetYAxis)
311          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
312
313        UpdateOutOfTrainingRangeStripLines();
314
315        calculationPendingTimer.Stop();
316        calculationPendingLabel.Visible = false;
317        if (updateOnFinish)
318          Update();
319      }
320      catch (OperationCanceledException) { }
321      catch (AggregateException ae) {
322        if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
323          throw;
324      }
325    }
326
327    public void UpdateTitlePosition() {
328      var title = chart.Titles[0];
329      var plotArea = InnerPlotPosition;
330
331      title.Visible = plotArea.Width != 0;
332
333      title.Position.X = plotArea.X + (plotArea.Width / 2);
334    }
335
336    private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
337      //guard if only one distinct value is present
338      if (minValue.IsAlmost(maxValue)) {
339        minValue = minValue - 0.5;
340        maxValue = minValue + 0.5;
341      }
342
343      double axisMin, axisMax, axisInterval;
344      ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
345      axis.Minimum = fixedAxisMin ?? axisMin;
346      axis.Maximum = fixedAxisMax ?? axisMax;
347      axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
348
349      chart.ChartAreas[0].RecalculateAxesScale();
350    }
351
352    private void RecalculateTrainingLimits(bool initializeAxisRanges) {
353      trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Min()).Max();
354      trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Max()).Min();
355
356      if (initializeAxisRanges) {
357        double xmin, xmax, xinterval;
358        //guard if only one distinct value is present
359        if (trainingMin.IsAlmost(trainingMax))
360          ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMax + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
361        else
362          ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
363
364        FixedXAxisMin = xmin;
365        FixedXAxisMax = xmax;
366      }
367    }
368
369    private void RecalculateInternalDataset() {
370      if (sharedFixedVariables == null)
371        return;
372
373      // we expand the range in order to get nice tick intervals on the x axis
374      double xmin, xmax, xinterval;
375      //guard if only one distinct value is present
376      if (trainingMin.IsAlmost(trainingMax))
377        ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMin + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
378      else
379        ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
380
381      if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value;
382      if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value;
383      double step = (xmax - xmin) / drawingSteps;
384
385      var xvalues = new List<double>();
386      for (int i = 0; i < drawingSteps; i++)
387        xvalues.Add(xmin + i * step);
388
389      if (sharedFixedVariables == null)
390        return;
391
392      var variables = sharedFixedVariables.VariableNames.ToList();
393      var values = new List<IList>();
394      foreach (var varName in variables) {
395        if (varName == FreeVariable) {
396          values.Add(xvalues);
397        } else if (sharedFixedVariables.VariableHasType<double>(varName)) {
398          values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), xvalues.Count).ToList());
399        } else if (sharedFixedVariables.VariableHasType<string>(varName)) {
400          values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), xvalues.Count).ToList());
401        }
402      }
403
404      internalDataset = new ModifiableDataset(variables, values);
405    }
406
407    private Tuple<Series, Series> CreateSeries(IRegressionSolution solution) {
408      var series = new Series {
409        ChartType = SeriesChartType.Line,
410        Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution)
411      };
412      series.LegendText = series.Name;
413
414      var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
415      Series confidenceIntervalSeries = null;
416      if (confidenceBoundSolution != null) {
417        confidenceIntervalSeries = new Series {
418          ChartType = SeriesChartType.Range,
419          YValuesPerPoint = 2,
420          Name = "95% Conf. Interval " + series.Name,
421          IsVisibleInLegend = false
422        };
423      }
424      return Tuple.Create(series, confidenceIntervalSeries);
425    }
426
427    private void OrderAndColorSeries() {
428      chart.SuspendRepaint();
429
430      chart.Series.Clear();
431      // Add mean series for applying palette colors
432      foreach (var solution in solutions) {
433        chart.Series.Add(seriesCache[solution]);
434      }
435
436      chart.Palette = ChartColorPalette.BrightPastel;
437      chart.ApplyPaletteColors();
438      chart.Palette = ChartColorPalette.None;
439
440      // Add confidence interval series before its coresponding series for correct z index
441      foreach (var solution in solutions) {
442        Series ciSeries;
443        if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
444          var series = seriesCache[solution];
445          ciSeries.Color = Color.FromArgb(40, series.Color);
446          int idx = chart.Series.IndexOf(seriesCache[solution]);
447          chart.Series.Insert(idx, ciSeries);
448        }
449      }
450
451      chart.ResumeRepaint(true);
452    }
453
454    private async Task<DoubleLimit> UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
455      var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
456
457      double min = double.MaxValue, max = double.MinValue;
458      foreach (var update in updateTasks) {
459        var limit = await update;
460        if (limit.Lower < min) min = limit.Lower;
461        if (limit.Upper > max) max = limit.Upper;
462      }
463
464      return new DoubleLimit(min, max);
465    }
466
467    private Task<DoubleLimit> UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
468      return Task.Run(() => {
469        var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
470        var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
471
472        double min = double.MaxValue, max = double.MinValue;
473
474        var series = seriesCache[solution];
475        for (int i = 0; i < xvalues.Count; i++) {
476          series.Points[i].SetValueXY(xvalues[i], yvalues[i]);
477          if (yvalues[i] < min) min = yvalues[i];
478          if (yvalues[i] > max) max = yvalues[i];
479        }
480
481        cancellationToken.ThrowIfCancellationRequested();
482
483        var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
484        if (confidenceBoundSolution != null) {
485          var confidenceIntervalSeries = ciSeriesCache[solution];
486          var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
487          for (int i = 0; i < xvalues.Count; i++) {
488            var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
489            var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
490            confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper);
491            if (lower < min) min = lower;
492            if (upper > max) max = upper;
493          }
494        }
495
496        cancellationToken.ThrowIfCancellationRequested();
497        return new DoubleLimit(min, max);
498      }, cancellationToken);
499    }
500
501    private void ResizeAllSeriesData() {
502      if (internalDataset == null)
503        return;
504
505      var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
506      foreach (var solution in solutions)
507        ResizeSeriesData(solution, xvalues);
508    }
509    private void ResizeSeriesData(IRegressionSolution solution, IList<double> xvalues = null) {
510      if (xvalues == null)
511        xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
512
513      var series = seriesCache[solution];
514      series.Points.SuspendUpdates();
515      series.Points.Clear();
516      for (int i = 0; i < xvalues.Count; i++)
517        series.Points.Add(new DataPoint(xvalues[i], 0.0));
518      series.Points.ResumeUpdates();
519
520      Series confidenceIntervalSeries;
521      if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
522        confidenceIntervalSeries.Points.SuspendUpdates();
523        confidenceIntervalSeries.Points.Clear();
524        for (int i = 0; i < xvalues.Count; i++)
525          confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 }));
526        confidenceIntervalSeries.Points.ResumeUpdates();
527      }
528    }
529
530    public async Task AddSolutionAsync(IRegressionSolution solution) {
531      if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
532        throw new ArgumentException("The solution is not compatible with the problem data.");
533      if (solutions.Contains(solution))
534        return;
535
536      solutions.Add(solution);
537      RecalculateTrainingLimits(true);
538
539      var series = CreateSeries(solution);
540      seriesCache.Add(solution, series.Item1);
541      if (series.Item2 != null)
542        ciSeriesCache.Add(solution, series.Item2);
543
544      ResizeSeriesData(solution);
545      OrderAndColorSeries();
546
547      await RecalculateAsync();
548      var args = new EventArgs<IRegressionSolution>(solution);
549      OnSolutionAdded(this, args);
550    }
551
552    public async Task RemoveSolutionAsync(IRegressionSolution solution) {
553      if (!solutions.Remove(solution))
554        return;
555
556      RecalculateTrainingLimits(true);
557
558      seriesCache.Remove(solution);
559      ciSeriesCache.Remove(solution);
560
561      await RecalculateAsync();
562      var args = new EventArgs<IRegressionSolution>(solution);
563      OnSolutionRemoved(this, args);
564    }
565
566    private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
567      var refSolution = solutions.First();
568      var refSolVars = refSolution.ProblemData.Dataset.VariableNames;
569      foreach (var solution in solutions.Skip(1)) {
570        var variables1 = solution.ProblemData.Dataset.VariableNames;
571        if (!variables1.All(refSolVars.Contains))
572          return false;
573
574        foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType<string>)) {
575          var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct();
576          if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false;
577        }
578      }
579      return true;
580    }
581
582    private void UpdateOutOfTrainingRangeStripLines() {
583      var axisX = chart.ChartAreas[0].AxisX;
584      var lowerStripLine = axisX.StripLines[0];
585      var upperStripLine = axisX.StripLines[1];
586
587      lowerStripLine.IntervalOffset = axisX.Minimum;
588      lowerStripLine.StripWidth = Math.Abs(trainingMin - axisX.Minimum);
589
590      upperStripLine.IntervalOffset = trainingMax;
591      upperStripLine.StripWidth = Math.Abs(axisX.Maximum - trainingMax);
592    }
593
594    #region Events
595    public event EventHandler<EventArgs<IRegressionSolution>> SolutionAdded;
596    public void OnSolutionAdded(object sender, EventArgs<IRegressionSolution> args) {
597      var added = SolutionAdded;
598      if (added == null) return;
599      added(sender, args);
600    }
601
602    public event EventHandler<EventArgs<IRegressionSolution>> SolutionRemoved;
603    public void OnSolutionRemoved(object sender, EventArgs<IRegressionSolution> args) {
604      var removed = SolutionRemoved;
605      if (removed == null) return;
606      removed(sender, args);
607    }
608
609    public event EventHandler VariableValueChanged;
610    public void OnVariableValueChanged(object sender, EventArgs args) {
611      var changed = VariableValueChanged;
612      if (changed == null) return;
613      changed(sender, args);
614    }
615
616    public event EventHandler ZoomChanged;
617    public void OnZoomChanged(object sender, EventArgs args) {
618      var changed = ZoomChanged;
619      if (changed == null) return;
620      changed(sender, args);
621    }
622
623    private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
624      if (o != sharedFixedVariables) return;
625      var variables = sharedFixedVariables.VariableNames.ToList();
626      var rowIndex = e.Value;
627      var columnIndex = e.Value2;
628
629      var variableName = variables[columnIndex];
630      if (variableName == FreeVariable) return;
631      if (internalDataset.VariableHasType<double>(variableName)) {
632        var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
633        var values = new List<double>(Enumerable.Repeat(v, internalDataset.Rows));
634        internalDataset.ReplaceVariable(variableName, values);
635      } else if (internalDataset.VariableHasType<string>(variableName)) {
636        var v = sharedFixedVariables.GetStringValue(variableName, rowIndex);
637        var values = new List<String>(Enumerable.Repeat(v, internalDataset.Rows));
638        internalDataset.ReplaceVariable(variableName, values);
639      } else {
640        // unsupported type
641        throw new NotSupportedException();
642      }
643    }
644
645    private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
646      var step = (trainingMax - trainingMin) / drawingSteps;
647      double newLocation = step * (long)Math.Round(e.NewLocationX / step);
648      var axisX = chart.ChartAreas[0].AxisX;
649      if (newLocation >= axisX.Maximum)
650        newLocation = axisX.Maximum - step;
651      if (newLocation <= axisX.Minimum)
652        newLocation = axisX.Minimum + step;
653
654      e.NewLocationX = newLocation;
655
656      UpdateCursor();
657    }
658    private void chart_AnnotationPositionChanged(object sender, EventArgs e) {
659      UpdateCursor();
660    }
661    private void UpdateCursor() {
662      var x = VerticalLineAnnotation.X;
663      sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
664
665      if (ShowCursor) {
666        chart.Titles[0].Text = FreeVariable + " : " + x.ToString("G5", CultureInfo.CurrentCulture);
667        chart.Update();
668      }
669
670      OnVariableValueChanged(this, EventArgs.Empty);
671    }
672
673    private void chart_MouseMove(object sender, MouseEventArgs e) {
674      bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation;
675      chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default;
676    }
677
678    private async void chart_DragDrop(object sender, DragEventArgs e) {
679      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
680      if (data != null) {
681        var solution = data as IRegressionSolution;
682        if (!solutions.Contains(solution))
683          await AddSolutionAsync(solution);
684      }
685    }
686    private void chart_DragEnter(object sender, DragEventArgs e) {
687      if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
688      e.Effect = DragDropEffects.None;
689
690      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
691      var regressionSolution = data as IRegressionSolution;
692      if (regressionSolution != null) {
693        e.Effect = DragDropEffects.Copy;
694      }
695    }
696
697    private void calculationPendingTimer_Tick(object sender, EventArgs e) {
698      calculationPendingLabel.Visible = true;
699      Update();
700    }
701
702    private void config_Click(object sender, EventArgs e) {
703      configurationDialog.ShowDialog(this);
704    }
705
706    private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) {
707      OnZoomChanged(this, EventArgs.Empty);
708    }
709
710    private void chart_Resize(object sender, EventArgs e) {
711      UpdateTitlePosition();
712    }
713
714    private void chart_PostPaint(object sender, ChartPaintEventArgs e) {
715      if (ChartPostPaint != null)
716        ChartPostPaint(this, EventArgs.Empty);
717    }
718    #endregion
719  }
720}
721
Note: See TracBrowser for help on using the repository browser.