source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Views/3.4/Controls/PartialDependencePlot.cs @ 15213

Last change on this file since 15213 was 15213, checked in by mkommend, 2 years ago

#2807: Initialized trainingMin and trainingMax with reasonable values.

File size: 27.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections;
24using System.Collections.Generic;
25using System.Drawing;
26using System.Globalization;
27using System.Linq;
28using System.Threading;
29using System.Threading.Tasks;
30using System.Windows.Forms;
31using System.Windows.Forms.DataVisualization.Charting;
32using HeuristicLab.Common;
33using HeuristicLab.MainForm.WindowsForms;
34using HeuristicLab.Visualization.ChartControlsExtensions;
35
36namespace HeuristicLab.Problems.DataAnalysis.Views {
37  public partial class PartialDependencePlot : UserControl, IPartialDependencePlot {
38    private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
39    private ModifiableDataset internalDataset; // holds the x values for each point drawn
40
41    private CancellationTokenSource cancelCurrentRecalculateSource;
42
43    private readonly List<IRegressionSolution> solutions;
44    private readonly Dictionary<IRegressionSolution, Series> seriesCache;
45    private readonly Dictionary<IRegressionSolution, Series> ciSeriesCache;
46
47    private readonly ToolStripMenuItem configToolStripMenuItem;
48    private readonly PartialDependencePlotConfigurationDialog configurationDialog;
49
50    #region Properties
51    public string XAxisTitle {
52      get { return chart.ChartAreas[0].AxisX.Title; }
53      set { chart.ChartAreas[0].AxisX.Title = value; }
54    }
55
56    public string YAxisTitle {
57      get { return chart.ChartAreas[0].AxisY.Title; }
58      set { chart.ChartAreas[0].AxisY.Title = value; }
59    }
60
61    public bool ShowLegend {
62      get { return chart.Legends[0].Enabled; }
63      set { chart.Legends[0].Enabled = value; }
64    }
65    public bool ShowCursor {
66      get { return chart.Annotations[0].Visible; }
67      set {
68        chart.Annotations[0].Visible = value;
69        if (!value) chart.Titles[0].Text = string.Empty;
70      }
71    }
72
73    public bool ShowConfigButton {
74      get { return configurationButton.Visible; }
75      set { configurationButton.Visible = value; }
76    }
77
78    private int xAxisTicks = 5;
79    public int XAxisTicks {
80      get { return xAxisTicks; }
81      set {
82        if (value != xAxisTicks) {
83          xAxisTicks = value;
84          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
85          RecalculateInternalDataset();
86        }
87      }
88    }
89    private double? fixedXAxisMin;
90    public double? FixedXAxisMin {
91      get { return fixedXAxisMin; }
92      set {
93        if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) {
94          fixedXAxisMin = value;
95          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
96          RecalculateInternalDataset();
97          // set the vertical line position
98          if (VerticalLineAnnotation.X <= fixedXAxisMin) {
99            var axisX = chart.ChartAreas[0].AxisX;
100            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
101            VerticalLineAnnotation.X = axisX.Minimum + step;
102          }
103        }
104      }
105    }
106    private double? fixedXAxisMax;
107    public double? FixedXAxisMax {
108      get { return fixedXAxisMax; }
109      set {
110        if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) {
111          fixedXAxisMax = value;
112          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
113          RecalculateInternalDataset();
114          // set the vertical line position
115          if (VerticalLineAnnotation.X >= fixedXAxisMax) {
116            var axisX = chart.ChartAreas[0].AxisX;
117            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
118            VerticalLineAnnotation.X = axisX.Maximum - step;
119          }
120        }
121      }
122    }
123
124    private int yAxisTicks = 5;
125    public int YAxisTicks {
126      get { return yAxisTicks; }
127      set {
128        if (value != yAxisTicks) {
129          yAxisTicks = value;
130          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
131          RecalculateInternalDataset();
132        }
133      }
134    }
135    private double? fixedYAxisMin;
136    public double? FixedYAxisMin {
137      get { return fixedYAxisMin; }
138      set {
139        if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
140          fixedYAxisMin = value;
141          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
142        }
143      }
144    }
145    private double? fixedYAxisMax;
146    public double? FixedYAxisMax {
147      get { return fixedYAxisMax; }
148      set {
149        if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
150          fixedYAxisMax = value;
151          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
152        }
153      }
154    }
155
156    private double trainingMin = -1;
157    private double trainingMax = 1;
158
159    private int drawingSteps = 1000;
160    public int DrawingSteps {
161      get { return drawingSteps; }
162      set {
163        if (value != drawingSteps) {
164          drawingSteps = value;
165          RecalculateInternalDataset();
166          ResizeAllSeriesData();
167        }
168      }
169    }
170
171    private string freeVariable;
172    public string FreeVariable {
173      get { return freeVariable; }
174      set {
175        if (value == freeVariable) return;
176        if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
177          throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
178        }
179        freeVariable = value;
180        RecalculateInternalDataset();
181      }
182    }
183
184    private double yMin;
185    public double YMin {
186      get { return yMin; }
187    }
188    private double yMax;
189    public double YMax {
190      get { return yMax; }
191    }
192
193    public bool IsZoomed {
194      get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; }
195    }
196
197    private VerticalLineAnnotation VerticalLineAnnotation {
198      get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
199    }
200
201    internal ElementPosition InnerPlotPosition {
202      get { return chart.ChartAreas[0].InnerPlotPosition; }
203    }
204    #endregion
205
206    public event EventHandler ChartPostPaint;
207
208    public PartialDependencePlot() {
209      InitializeComponent();
210
211      solutions = new List<IRegressionSolution>();
212      seriesCache = new Dictionary<IRegressionSolution, Series>();
213      ciSeriesCache = new Dictionary<IRegressionSolution, Series>();
214
215      // Configure axis
216      chart.CustomizeAllChartAreas();
217      chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
218      chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
219      chart.ChartAreas[0].CursorX.Interval = 0;
220
221      chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
222      chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
223      chart.ChartAreas[0].CursorY.Interval = 0;
224
225      configToolStripMenuItem = new ToolStripMenuItem("Configuration");
226      configToolStripMenuItem.Click += config_Click;
227      chart.ContextMenuStrip.Items.Add(new ToolStripSeparator());
228      chart.ContextMenuStrip.Items.Add(configToolStripMenuItem);
229      configurationDialog = new PartialDependencePlotConfigurationDialog(this);
230
231      Disposed += Control_Disposed;
232    }
233
234    private void Control_Disposed(object sender, EventArgs e) {
235      if (cancelCurrentRecalculateSource != null)
236        cancelCurrentRecalculateSource.Cancel();
237    }
238
239    public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) {
240      if (!SolutionsCompatible(solutions))
241        throw new ArgumentException("Solutions are not compatible with the problem data.");
242      this.freeVariable = freeVariable;
243      this.drawingSteps = drawingSteps;
244
245      this.solutions.Clear();
246      this.solutions.AddRange(solutions);
247
248      // add an event such that whenever a value is changed in the shared dataset,
249      // this change is reflected in the internal dataset (where the value becomes a whole column)
250      if (this.sharedFixedVariables != null)
251        this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
252      this.sharedFixedVariables = sharedFixedVariables;
253      this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
254
255      RecalculateTrainingLimits(initializeAxisRanges);
256      RecalculateInternalDataset();
257
258      chart.Series.Clear();
259      seriesCache.Clear();
260      ciSeriesCache.Clear();
261      foreach (var solution in this.solutions) {
262        var series = CreateSeries(solution);
263        seriesCache.Add(solution, series.Item1);
264        if (series.Item2 != null)
265          ciSeriesCache.Add(solution, series.Item2);
266      }
267
268      // Set cursor and x-axis
269      // Make sure to allow a small offset to be able to distinguish the vertical line annotation from the axis
270      var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
271      var step = (trainingMax - trainingMin) / drawingSteps;
272      var minimum = chart.ChartAreas[0].AxisX.Minimum;
273      var maximum = chart.ChartAreas[0].AxisX.Maximum;
274      if (defaultValue <= minimum)
275        VerticalLineAnnotation.X = minimum + step;
276      else if (defaultValue >= maximum)
277        VerticalLineAnnotation.X = maximum - step;
278      else
279        VerticalLineAnnotation.X = defaultValue;
280
281      if (ShowCursor)
282        chart.Titles[0].Text = FreeVariable + " : " + defaultValue.ToString("G5", CultureInfo.CurrentCulture);
283
284      ResizeAllSeriesData();
285      OrderAndColorSeries();
286    }
287
288    public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
289      if (IsDisposed
290        || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
291        || trainingMin > trainingMax || drawingSteps == 0)
292        return;
293
294      calculationPendingTimer.Start();
295
296      // cancel previous recalculate call
297      if (cancelCurrentRecalculateSource != null)
298        cancelCurrentRecalculateSource.Cancel();
299      cancelCurrentRecalculateSource = new CancellationTokenSource();
300      var cancellationToken = cancelCurrentRecalculateSource.Token;
301
302      // Update series
303      try {
304        var limits = await UpdateAllSeriesDataAsync(cancellationToken);
305        chart.Invalidate();
306
307        yMin = limits.Lower;
308        yMax = limits.Upper;
309        // Set y-axis
310        if (resetYAxis)
311          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
312
313        UpdateOutOfTrainingRangeStripLines();
314
315        calculationPendingTimer.Stop();
316        calculationPendingLabel.Visible = false;
317        if (updateOnFinish)
318          Update();
319      }
320      catch (OperationCanceledException) { }
321      catch (AggregateException ae) {
322        if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
323          throw;
324      }
325    }
326
327    public void UpdateTitlePosition() {
328      var title = chart.Titles[0];
329      var plotArea = InnerPlotPosition;
330
331      title.Visible = plotArea.Width != 0;
332
333      title.Position.X = plotArea.X + (plotArea.Width / 2);
334    }
335
336    private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
337      //guard if only one distinct value is present
338      if (minValue.IsAlmost(maxValue)) {
339        minValue = minValue - 0.5;
340        maxValue = minValue + 0.5;
341      }
342
343      double axisMin, axisMax, axisInterval;
344      ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
345      axis.Minimum = fixedAxisMin ?? axisMin;
346      axis.Maximum = fixedAxisMax ?? axisMax;
347      axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
348
349      try {
350        chart.ChartAreas[0].RecalculateAxesScale();
351      }
352      catch (InvalidOperationException) {
353        // Can occur if eg. axis min == axis max
354      }
355    }
356
357    private void RecalculateTrainingLimits(bool initializeAxisRanges) {
358      trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Min()).Max();
359      trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Max()).Min();
360
361      if (initializeAxisRanges) {
362        double xmin, xmax, xinterval;
363        //guard if only one distinct value is present
364        if (trainingMin.IsAlmost(trainingMax))
365          ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMax + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
366        else
367          ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
368
369        FixedXAxisMin = xmin;
370        FixedXAxisMax = xmax;
371      }
372    }
373
374    private void RecalculateInternalDataset() {
375      if (sharedFixedVariables == null)
376        return;
377
378      // we expand the range in order to get nice tick intervals on the x axis
379      double xmin, xmax, xinterval;
380      //guard if only one distinct value is present
381      if (trainingMin.IsAlmost(trainingMax))
382        ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMin + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
383      else
384        ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
385
386      if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value;
387      if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value;
388      double step = (xmax - xmin) / drawingSteps;
389
390      var xvalues = new List<double>();
391      for (int i = 0; i < drawingSteps; i++)
392        xvalues.Add(xmin + i * step);
393
394      if (sharedFixedVariables == null)
395        return;
396
397      var variables = sharedFixedVariables.VariableNames.ToList();
398      var values = new List<IList>();
399      foreach (var varName in variables) {
400        if (varName == FreeVariable) {
401          values.Add(xvalues);
402        } else if (sharedFixedVariables.VariableHasType<double>(varName)) {
403          values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), xvalues.Count).ToList());
404        } else if (sharedFixedVariables.VariableHasType<string>(varName)) {
405          values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), xvalues.Count).ToList());
406        }
407      }
408
409      internalDataset = new ModifiableDataset(variables, values);
410    }
411
412    private Tuple<Series, Series> CreateSeries(IRegressionSolution solution) {
413      var series = new Series {
414        ChartType = SeriesChartType.Line,
415        Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution)
416      };
417      series.LegendText = series.Name;
418
419      var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
420      Series confidenceIntervalSeries = null;
421      if (confidenceBoundSolution != null) {
422        confidenceIntervalSeries = new Series {
423          ChartType = SeriesChartType.Range,
424          YValuesPerPoint = 2,
425          Name = "95% Conf. Interval " + series.Name,
426          IsVisibleInLegend = false
427        };
428      }
429      return Tuple.Create(series, confidenceIntervalSeries);
430    }
431
432    private void OrderAndColorSeries() {
433      chart.SuspendRepaint();
434
435      chart.Series.Clear();
436      // Add mean series for applying palette colors
437      foreach (var solution in solutions) {
438        chart.Series.Add(seriesCache[solution]);
439      }
440
441      chart.Palette = ChartColorPalette.BrightPastel;
442      chart.ApplyPaletteColors();
443      chart.Palette = ChartColorPalette.None;
444
445      // Add confidence interval series before its coresponding series for correct z index
446      foreach (var solution in solutions) {
447        Series ciSeries;
448        if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
449          var series = seriesCache[solution];
450          ciSeries.Color = Color.FromArgb(40, series.Color);
451          int idx = chart.Series.IndexOf(seriesCache[solution]);
452          chart.Series.Insert(idx, ciSeries);
453        }
454      }
455
456      chart.ResumeRepaint(true);
457    }
458
459    private async Task<DoubleLimit> UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
460      var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
461
462      double min = double.MaxValue, max = double.MinValue;
463      foreach (var update in updateTasks) {
464        var limit = await update;
465        if (limit.Lower < min) min = limit.Lower;
466        if (limit.Upper > max) max = limit.Upper;
467      }
468
469      return new DoubleLimit(min, max);
470    }
471
472    private Task<DoubleLimit> UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
473      return Task.Run(() => {
474        var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
475        var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
476
477        double min = double.MaxValue, max = double.MinValue;
478
479        var series = seriesCache[solution];
480        for (int i = 0; i < xvalues.Count; i++) {
481          series.Points[i].SetValueXY(xvalues[i], yvalues[i]);
482          if (yvalues[i] < min) min = yvalues[i];
483          if (yvalues[i] > max) max = yvalues[i];
484        }
485
486        cancellationToken.ThrowIfCancellationRequested();
487
488        var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
489        if (confidenceBoundSolution != null) {
490          var confidenceIntervalSeries = ciSeriesCache[solution];
491          var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
492          for (int i = 0; i < xvalues.Count; i++) {
493            var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
494            var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
495            confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper);
496            if (lower < min) min = lower;
497            if (upper > max) max = upper;
498          }
499        }
500
501        cancellationToken.ThrowIfCancellationRequested();
502        return new DoubleLimit(min, max);
503      }, cancellationToken);
504    }
505
506    private void ResizeAllSeriesData() {
507      if (internalDataset == null)
508        return;
509
510      var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
511      foreach (var solution in solutions)
512        ResizeSeriesData(solution, xvalues);
513    }
514    private void ResizeSeriesData(IRegressionSolution solution, IList<double> xvalues = null) {
515      if (xvalues == null)
516        xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
517
518      var series = seriesCache[solution];
519      series.Points.SuspendUpdates();
520      series.Points.Clear();
521      for (int i = 0; i < xvalues.Count; i++)
522        series.Points.Add(new DataPoint(xvalues[i], 0.0));
523      series.Points.ResumeUpdates();
524
525      Series confidenceIntervalSeries;
526      if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
527        confidenceIntervalSeries.Points.SuspendUpdates();
528        confidenceIntervalSeries.Points.Clear();
529        for (int i = 0; i < xvalues.Count; i++)
530          confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 }));
531        confidenceIntervalSeries.Points.ResumeUpdates();
532      }
533    }
534
535    public async Task AddSolutionAsync(IRegressionSolution solution) {
536      if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
537        throw new ArgumentException("The solution is not compatible with the problem data.");
538      if (solutions.Contains(solution))
539        return;
540
541      solutions.Add(solution);
542      RecalculateTrainingLimits(true);
543
544      var series = CreateSeries(solution);
545      seriesCache.Add(solution, series.Item1);
546      if (series.Item2 != null)
547        ciSeriesCache.Add(solution, series.Item2);
548
549      ResizeSeriesData(solution);
550      OrderAndColorSeries();
551
552      await RecalculateAsync();
553      var args = new EventArgs<IRegressionSolution>(solution);
554      OnSolutionAdded(this, args);
555    }
556
557    public async Task RemoveSolutionAsync(IRegressionSolution solution) {
558      if (!solutions.Remove(solution))
559        return;
560
561      RecalculateTrainingLimits(true);
562
563      seriesCache.Remove(solution);
564      ciSeriesCache.Remove(solution);
565
566      await RecalculateAsync();
567      var args = new EventArgs<IRegressionSolution>(solution);
568      OnSolutionRemoved(this, args);
569    }
570
571    private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
572      var refSolution = solutions.First();
573      var refSolVars = refSolution.ProblemData.Dataset.VariableNames;
574      foreach (var solution in solutions.Skip(1)) {
575        var variables1 = solution.ProblemData.Dataset.VariableNames;
576        if (!variables1.All(refSolVars.Contains))
577          return false;
578
579        foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType<string>)) {
580          var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct();
581          if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false;
582        }
583      }
584      return true;
585    }
586
587    private void UpdateOutOfTrainingRangeStripLines() {
588      var axisX = chart.ChartAreas[0].AxisX;
589      var lowerStripLine = axisX.StripLines[0];
590      var upperStripLine = axisX.StripLines[1];
591
592      lowerStripLine.IntervalOffset = axisX.Minimum;
593      lowerStripLine.StripWidth = Math.Abs(trainingMin - axisX.Minimum);
594
595      upperStripLine.IntervalOffset = trainingMax;
596      upperStripLine.StripWidth = Math.Abs(axisX.Maximum - trainingMax);
597    }
598
599    #region Events
600    public event EventHandler<EventArgs<IRegressionSolution>> SolutionAdded;
601    public void OnSolutionAdded(object sender, EventArgs<IRegressionSolution> args) {
602      var added = SolutionAdded;
603      if (added == null) return;
604      added(sender, args);
605    }
606
607    public event EventHandler<EventArgs<IRegressionSolution>> SolutionRemoved;
608    public void OnSolutionRemoved(object sender, EventArgs<IRegressionSolution> args) {
609      var removed = SolutionRemoved;
610      if (removed == null) return;
611      removed(sender, args);
612    }
613
614    public event EventHandler VariableValueChanged;
615    public void OnVariableValueChanged(object sender, EventArgs args) {
616      var changed = VariableValueChanged;
617      if (changed == null) return;
618      changed(sender, args);
619    }
620
621    public event EventHandler ZoomChanged;
622    public void OnZoomChanged(object sender, EventArgs args) {
623      var changed = ZoomChanged;
624      if (changed == null) return;
625      changed(sender, args);
626    }
627
628    private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
629      if (o != sharedFixedVariables) return;
630      var variables = sharedFixedVariables.VariableNames.ToList();
631      var rowIndex = e.Value;
632      var columnIndex = e.Value2;
633
634      var variableName = variables[columnIndex];
635      if (variableName == FreeVariable) return;
636      if (internalDataset.VariableHasType<double>(variableName)) {
637        var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
638        var values = new List<double>(Enumerable.Repeat(v, internalDataset.Rows));
639        internalDataset.ReplaceVariable(variableName, values);
640      } else if (internalDataset.VariableHasType<string>(variableName)) {
641        var v = sharedFixedVariables.GetStringValue(variableName, rowIndex);
642        var values = new List<String>(Enumerable.Repeat(v, internalDataset.Rows));
643        internalDataset.ReplaceVariable(variableName, values);
644      } else {
645        // unsupported type
646        throw new NotSupportedException();
647      }
648    }
649
650    private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
651      var step = (trainingMax - trainingMin) / drawingSteps;
652      double newLocation = step * (long)Math.Round(e.NewLocationX / step);
653      var axisX = chart.ChartAreas[0].AxisX;
654      if (newLocation >= axisX.Maximum)
655        newLocation = axisX.Maximum - step;
656      if (newLocation <= axisX.Minimum)
657        newLocation = axisX.Minimum + step;
658
659      e.NewLocationX = newLocation;
660
661      UpdateCursor();
662    }
663    private void chart_AnnotationPositionChanged(object sender, EventArgs e) {
664      UpdateCursor();
665    }
666    private void UpdateCursor() {
667      var x = VerticalLineAnnotation.X;
668      sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
669
670      if (ShowCursor) {
671        chart.Titles[0].Text = FreeVariable + " : " + x.ToString("G5", CultureInfo.CurrentCulture);
672        chart.Update();
673      }
674
675      OnVariableValueChanged(this, EventArgs.Empty);
676    }
677
678    private void chart_MouseMove(object sender, MouseEventArgs e) {
679      bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation;
680      chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default;
681    }
682
683    private async void chart_DragDrop(object sender, DragEventArgs e) {
684      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
685      if (data != null) {
686        var solution = data as IRegressionSolution;
687        if (!solutions.Contains(solution))
688          await AddSolutionAsync(solution);
689      }
690    }
691    private void chart_DragEnter(object sender, DragEventArgs e) {
692      if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
693      e.Effect = DragDropEffects.None;
694
695      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
696      var regressionSolution = data as IRegressionSolution;
697      if (regressionSolution != null) {
698        e.Effect = DragDropEffects.Copy;
699      }
700    }
701
702    private void calculationPendingTimer_Tick(object sender, EventArgs e) {
703      calculationPendingLabel.Visible = true;
704      Update();
705    }
706
707    private void config_Click(object sender, EventArgs e) {
708      configurationDialog.ShowDialog(this);
709    }
710
711    private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) {
712      OnZoomChanged(this, EventArgs.Empty);
713    }
714
715    private void chart_Resize(object sender, EventArgs e) {
716      UpdateTitlePosition();
717    }
718
719    private void chart_PostPaint(object sender, ChartPaintEventArgs e) {
720      if (ChartPostPaint != null)
721        ChartPostPaint(this, EventArgs.Empty);
722    }
723    #endregion
724  }
725}
726
Note: See TracBrowser for help on using the repository browser.