[5649] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using System;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Represents a symbolic classification model
|
---|
| 37 | /// </summary>
|
---|
| 38 | [StorableClass]
|
---|
| 39 | [Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
|
---|
| 40 | public class SymbolicDiscriminantFunctionClassificationModel : SymbolicDataAnalysisModel, ISymbolicDiscriminantFunctionClassificationModel {
|
---|
| 41 |
|
---|
| 42 | [Storable]
|
---|
| 43 | private double[] thresholds;
|
---|
| 44 | public IEnumerable<double> Thresholds {
|
---|
| 45 | get { return (IEnumerable<double>)thresholds.Clone(); }
|
---|
[5736] | 46 | private set { thresholds = value.ToArray(); }
|
---|
[5649] | 47 | }
|
---|
[5678] | 48 | [Storable]
|
---|
| 49 | private double[] classValues;
|
---|
| 50 | public IEnumerable<double> ClassValues {
|
---|
| 51 | get { return (IEnumerable<double>)classValues.Clone(); }
|
---|
[5736] | 52 | private set { classValues = value.ToArray(); }
|
---|
[5678] | 53 | }
|
---|
[5720] | 54 | [Storable]
|
---|
| 55 | private double lowerEstimationLimit;
|
---|
| 56 | public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
|
---|
| 57 | [Storable]
|
---|
| 58 | private double upperEstimationLimit;
|
---|
| 59 | public double UpperEstimationLimit { get { return upperEstimationLimit; } }
|
---|
| 60 |
|
---|
[5649] | 61 | [StorableConstructor]
|
---|
| 62 | protected SymbolicDiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
|
---|
| 63 | protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
|
---|
| 64 | : base(original, cloner) {
|
---|
| 65 | classValues = (double[])original.classValues.Clone();
|
---|
| 66 | thresholds = (double[])original.thresholds.Clone();
|
---|
[5720] | 67 | lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
| 68 | upperEstimationLimit = original.upperEstimationLimit;
|
---|
[5649] | 69 | }
|
---|
[5720] | 70 | public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 71 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
[5649] | 72 | : base(tree, interpreter) {
|
---|
[5736] | 73 | thresholds = new double[] { double.NegativeInfinity };
|
---|
| 74 | classValues = new double[] { 0.0 };
|
---|
[5720] | 75 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
| 76 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
[5649] | 77 | }
|
---|
| 78 |
|
---|
| 79 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 80 | return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
[5736] | 83 | public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
|
---|
| 84 | var classValuesArr = classValues.ToArray();
|
---|
| 85 | var thresholdsArr = thresholds.ToArray();
|
---|
| 86 | if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
|
---|
| 87 |
|
---|
| 88 | this.classValues = classValuesArr;
|
---|
| 89 | this.thresholds = thresholdsArr;
|
---|
| 90 | OnThresholdsChanged(EventArgs.Empty);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
[5649] | 93 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
[5736] | 94 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
|
---|
| 95 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
[5649] | 96 | }
|
---|
| 97 |
|
---|
| 98 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 99 | foreach (var x in GetEstimatedValues(dataset, rows)) {
|
---|
| 100 | int classIndex = 0;
|
---|
[5678] | 101 | // find first threshold value which is larger than x => class index = threshold index + 1
|
---|
[5649] | 102 | for (int i = 0; i < thresholds.Length; i++) {
|
---|
| 103 | if (x > thresholds[i]) classIndex++;
|
---|
| 104 | else break;
|
---|
| 105 | }
|
---|
[5657] | 106 | yield return classValues.ElementAt(classIndex - 1);
|
---|
[5649] | 107 | }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | #region events
|
---|
| 111 | public event EventHandler ThresholdsChanged;
|
---|
| 112 | protected virtual void OnThresholdsChanged(EventArgs e) {
|
---|
| 113 | var listener = ThresholdsChanged;
|
---|
| 114 | if (listener != null) listener(this, e);
|
---|
| 115 | }
|
---|
[5720] | 116 | #endregion
|
---|
[5818] | 117 |
|
---|
| 118 | public static void Scale(SymbolicDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData) {
|
---|
| 119 | var dataset = problemData.Dataset;
|
---|
| 120 | var targetVariable = problemData.TargetVariable;
|
---|
| 121 | var rows = problemData.TrainingIndizes;
|
---|
| 122 | var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
|
---|
| 123 | var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
| 124 | double alpha;
|
---|
| 125 | double beta;
|
---|
[5942] | 126 | OnlineCalculatorError errorState;
|
---|
[5894] | 127 | OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState);
|
---|
[5942] | 128 | if (errorState != OnlineCalculatorError.None) return;
|
---|
[5818] | 129 |
|
---|
| 130 | ConstantTreeNode alphaTreeNode = null;
|
---|
| 131 | ConstantTreeNode betaTreeNode = null;
|
---|
| 132 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
| 133 | var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
| 134 | if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
| 135 | var addNode = startNode.GetSubtree(0);
|
---|
| 136 | if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 137 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 138 | var mulNode = addNode.GetSubtree(0);
|
---|
| 139 | if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 140 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
| 145 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
| 146 | betaTreeNode.Value *= beta;
|
---|
| 147 | alphaTreeNode.Value *= beta;
|
---|
| 148 | alphaTreeNode.Value += alpha;
|
---|
| 149 | } else {
|
---|
| 150 | var mainBranch = startNode.GetSubtree(0);
|
---|
| 151 | startNode.RemoveSubtree(0);
|
---|
| 152 | var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
|
---|
| 153 | startNode.AddSubtree(scaledMainBranch);
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 158 | if (alpha.IsAlmost(0.0)) {
|
---|
| 159 | return treeNode;
|
---|
| 160 | } else {
|
---|
| 161 | var node = (new Addition()).CreateTreeNode();
|
---|
| 162 | var alphaConst = MakeConstant(alpha);
|
---|
| 163 | node.AddSubtree(treeNode);
|
---|
| 164 | node.AddSubtree(alphaConst);
|
---|
| 165 | return node;
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) {
|
---|
| 170 | if (beta.IsAlmost(1.0)) {
|
---|
| 171 | return treeNode;
|
---|
| 172 | } else {
|
---|
| 173 | var node = (new Multiplication()).CreateTreeNode();
|
---|
| 174 | var betaConst = MakeConstant(beta);
|
---|
| 175 | node.AddSubtree(treeNode);
|
---|
| 176 | node.AddSubtree(betaConst);
|
---|
| 177 | return node;
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 182 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 183 | node.Value = c;
|
---|
| 184 | return node;
|
---|
| 185 | }
|
---|
[5649] | 186 | }
|
---|
| 187 | }
|
---|