Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Modeling/3.2/LinearScaler.cs @ 3580

Last change on this file since 3580 was 2977, checked in by gkronber, 15 years ago

Moved linear scaling functionality out of tree evaluator into a separate operator. #823 (Implement tree evaluator with linear scaling to improve convergence in symbolic regression.)

File size: 5.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Text;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using System.Linq;
28
29namespace HeuristicLab.Modeling {
30  public class LinearScaler : OperatorBase {
31    public LinearScaler()
32      : base() {
33      AddVariableInfo(new VariableInfo("Values", "Matrix of predicted and original values that should be scaled", typeof(DoubleMatrixData), VariableKind.In | VariableKind.Out));
34      AddVariableInfo(new VariableInfo("Alpha", "Maximization problem", typeof(BoolData), VariableKind.New | VariableKind.In));
35      AddVariableInfo(new VariableInfo("Beta", "The best solution of the run", typeof(IScope), VariableKind.New | VariableKind.In));
36      AddVariableInfo(new VariableInfo("UpperEstimationLimit", "Upper limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
37      AddVariableInfo(new VariableInfo("LowerEstimationLimit", "Lower limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
38    }
39
40    public override IOperation Apply(IScope scope) {
41      double[,] values = GetVariableValue<DoubleMatrixData>("Values", scope, true).Data;
42      DoubleData alpha = GetVariableValue<DoubleData>("Alpha", scope, true, false);
43      DoubleData beta = GetVariableValue<DoubleData>("Beta", scope, true, false);
44      DoubleData lowerEstimationLimit = GetVariableValue<DoubleData>("LowerEstimationLimit", scope, true, false);
45      DoubleData upperEstimationLimit = GetVariableValue<DoubleData>("UpperEstimationLimit", scope, true, false);
46
47      double a, b;
48      if (alpha == null || beta == null) {
49        // one of the variables is missing -> recalculate
50        CalculateScalingParameters(values, out b, out a);
51        scope.AddVariable(new Variable(scope.TranslateName("Alpha"), new DoubleData(a)));
52        scope.AddVariable(new Variable(scope.TranslateName("Beta"), new DoubleData(b)));
53      } else {
54        // both variables are set already
55        a = alpha.Data;
56        b = beta.Data;
57      }
58      // check if upper and lower limit are set and use -Inf and +Inf as a default
59      double lowerLimit = lowerEstimationLimit == null ? double.NegativeInfinity : lowerEstimationLimit.Data;
60      double upperLimit = upperEstimationLimit == null ? double.PositiveInfinity : upperEstimationLimit.Data;
61      // apply scaling
62      Scale(values, a, b, lowerLimit, upperLimit);
63
64      return null;
65    }
66
67
68    public static void CalculateScalingParameters(double[,] values, out double beta, out double alpha) {
69      var result = from row in Enumerable.Range(0, values.GetLength(0))
70                   let t = values[row, SimpleEvaluatorBase.ORIGINAL_INDEX]
71                   let e = values[row, SimpleEvaluatorBase.ESTIMATION_INDEX]
72                   select new { Estimation = e, Target = t };
73
74      // calculate alpha and beta on the subset of rows with valid values
75      var filteredResult = result.Where(x => IsValidValue(x.Target) && IsValidValue(x.Estimation));
76      var target = filteredResult.Select(x => x.Target);
77      var estimation = filteredResult.Select(x => x.Estimation);
78      double tMean = target.Sum() / target.Count();
79      double xMean = estimation.Sum() / estimation.Count();
80      double sumXT = 0;
81      double sumXX = 0;
82      foreach (var r in result) {
83        double x = r.Estimation;
84        double t = r.Target;
85        sumXT += (x - xMean) * (t - tMean);
86        sumXX += (x - xMean) * (x - xMean);
87      }
88      if (sumXX != 0) {
89        beta = sumXT / sumXX;
90      } else {
91        beta = 1;
92      }
93      alpha = tMean - beta * xMean;
94    }
95
96    public static void Scale(double[,] values, double alpha, double beta, double lowerEstimationLimit, double upperEstimationLimit) {
97      int rows = values.GetLength(0);
98      for (int row = 0; row < rows; row++) {
99        double estimatedValue = values[row, SimpleEvaluatorBase.ESTIMATION_INDEX];
100        if (double.IsNaN(estimatedValue))
101          estimatedValue = upperEstimationLimit;
102        values[row, SimpleEvaluatorBase.ESTIMATION_INDEX] =
103          Math.Min(Math.Max(estimatedValue * beta + alpha, lowerEstimationLimit), upperEstimationLimit); ;
104      }
105    }
106
107    private static bool IsValidValue(double d) {
108      return !double.IsInfinity(d) && !double.IsNaN(d);
109    }
110  }
111}
Note: See TracBrowser for help on using the repository browser.