1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Diagnostics;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.DataAnalysis;
|
---|
26 | using HeuristicLab.GP.Interfaces;
|
---|
27 | using System.Collections.Generic; // double.IsAlmost extension
|
---|
28 | using System.Linq;
|
---|
29 | using System.Xml;
|
---|
30 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
31 | /// <summary>
|
---|
32 | /// Evaluates FunctionTrees recursively by interpretation of the function symbols in each node.
|
---|
33 | /// Scales the output of the function-tree to the desired output range of the target variable by linear transformation
|
---|
34 | /// Not thread-safe!
|
---|
35 | /// </summary>
|
---|
36 | public class ScalingTreeEvaluator : HL3TreeEvaluator, ITreeEvaluator {
|
---|
37 | public ScalingTreeEvaluator() : base() { } // for persistence
|
---|
38 | public ScalingTreeEvaluator(double minValue, double maxValue)
|
---|
39 | : base(minValue, maxValue) {
|
---|
40 | }
|
---|
41 |
|
---|
42 | private string targetVariable;
|
---|
43 | public string TargetVariable {
|
---|
44 | get { return targetVariable; }
|
---|
45 | set { targetVariable = value; }
|
---|
46 | }
|
---|
47 |
|
---|
48 |
|
---|
49 | public override double Evaluate(int sampleIndex) {
|
---|
50 | PC = 0;
|
---|
51 | this.sampleIndex = sampleIndex;
|
---|
52 | double estimation = EvaluateBakedCode();
|
---|
53 | //if (double.IsPositiveInfinity(estimation)) estimation = UpperEvaluationLimit;
|
---|
54 | //else if (double.IsNegativeInfinity(estimation)) estimation = LowerEvaluationLimit;
|
---|
55 | //else if (double.IsNaN(estimation)) estimation = UpperEvaluationLimit;
|
---|
56 | return estimation;
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IEnumerable<double> Evaluate(Dataset dataset, IFunctionTree tree, IEnumerable<int> rows) {
|
---|
60 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
61 | // evaluate for all rows
|
---|
62 | PrepareForEvaluation(dataset, tree);
|
---|
63 | var result = (from row in rows
|
---|
64 | let y = Evaluate(row)
|
---|
65 | let y_ = dataset.GetValue(row, targetVariableIndex)
|
---|
66 | select new { Row = row, Estimation = y, Target = y_ }).ToArray();
|
---|
67 |
|
---|
68 | // calculate alpha and beta on the subset of rows with valid values
|
---|
69 | var filteredResult = result.Where(x => IsValidValue(x.Target) && IsValidValue(x.Estimation));
|
---|
70 | var target = filteredResult.Select(x => x.Target);
|
---|
71 | var estimation = filteredResult.Select(x => x.Estimation);
|
---|
72 | double a, b;
|
---|
73 | if (filteredResult.Count() > 2) {
|
---|
74 | double tMean = target.Sum() / target.Count();
|
---|
75 | double xMean = estimation.Sum() / estimation.Count();
|
---|
76 | double sumXT = 0;
|
---|
77 | double sumXX = 0;
|
---|
78 | foreach (var r in result) {
|
---|
79 | double x = r.Estimation;
|
---|
80 | double t = r.Target;
|
---|
81 | sumXT += (x - xMean) * (t - tMean);
|
---|
82 | sumXX += (x - xMean) * (x - xMean);
|
---|
83 | }
|
---|
84 | b = sumXT / sumXX;
|
---|
85 | a = tMean - b * xMean;
|
---|
86 | } else {
|
---|
87 | b = 1.0;
|
---|
88 | a = 0.0;
|
---|
89 | }
|
---|
90 | // return scaled results
|
---|
91 | return from r in result
|
---|
92 | let scaledR = Math.Min(Math.Max(r.Estimation * b + a, LowerEvaluationLimit), UpperEvaluationLimit)
|
---|
93 | select double.IsNaN(scaledR) ? UpperEvaluationLimit : scaledR;
|
---|
94 | }
|
---|
95 |
|
---|
96 | private bool IsValidValue(double d) {
|
---|
97 | return !double.IsInfinity(d) && !double.IsNaN(d);
|
---|
98 | }
|
---|
99 |
|
---|
100 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
101 | ScalingTreeEvaluator clone = (ScalingTreeEvaluator)base.Clone(clonedObjects);
|
---|
102 | clone.targetVariable = targetVariable;
|
---|
103 | return clone;
|
---|
104 | }
|
---|
105 |
|
---|
106 | public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary<Guid, HeuristicLab.Core.IStorable> persistedObjects) {
|
---|
107 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
108 | XmlAttribute targetVariableAttribute = document.CreateAttribute("TargetVariable");
|
---|
109 | targetVariableAttribute.Value = targetVariable;
|
---|
110 | node.Attributes.Append(targetVariableAttribute);
|
---|
111 | return node;
|
---|
112 | }
|
---|
113 |
|
---|
114 | public override void Populate(XmlNode node, IDictionary<Guid, HeuristicLab.Core.IStorable> restoredObjects) {
|
---|
115 | base.Populate(node, restoredObjects);
|
---|
116 | targetVariable = node.Attributes["TargetVariable"].Value;
|
---|
117 | }
|
---|
118 | }
|
---|
119 | }
|
---|