1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.GP.Interfaces;
|
---|
29 | using HeuristicLab.Modeling;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 | using HeuristicLab.Common;
|
---|
32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
33 | public class LinearScalingPredictorBuilder : OperatorBase {
|
---|
34 | public LinearScalingPredictorBuilder()
|
---|
35 | : base() {
|
---|
36 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("PunishmentFactor", "The punishment factor limits the estimated values to a certain range", typeof(DoubleData), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("Dataset", "The dataset", typeof(Dataset), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training set", typeof(DoubleData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training set", typeof(DoubleData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override string Description {
|
---|
46 | get { return "Extracts the function tree scales the output of the tree and combines the scaled tree with a HL3TreeEvaluator to a predictor for the model analyzer."; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override IOperation Apply(IScope scope) {
|
---|
50 | IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
51 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
52 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
53 | int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
54 | int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
55 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
56 | IPredictor predictor = CreatePredictor(model, punishmentFactor, dataset, targetVariable, start, end);
|
---|
57 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
|
---|
58 | return null;
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, double punishmentFactor,
|
---|
62 | Dataset dataset, string targetVariable, int start, int end) {
|
---|
63 | return CreatePredictor(model, punishmentFactor, dataset, dataset.GetVariableIndex(targetVariable), start, end);
|
---|
64 | }
|
---|
65 |
|
---|
66 |
|
---|
67 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, double punishmentFactor,
|
---|
68 | Dataset dataset, int targetVariable, int start, int end) {
|
---|
69 |
|
---|
70 | var evaluator = new HL3TreeEvaluator();
|
---|
71 | // evaluate for all rows
|
---|
72 | evaluator.PrepareForEvaluation(dataset, model.FunctionTree);
|
---|
73 | var result = from row in Enumerable.Range(start, end - start)
|
---|
74 | let y = evaluator.Evaluate(row)
|
---|
75 | let y_ = dataset.GetValue(row, targetVariable)
|
---|
76 | select new { Row = row, Estimation = y, Target = y_ };
|
---|
77 |
|
---|
78 | // calculate alpha and beta on the subset of rows with valid values
|
---|
79 | var filteredResult = result.Where(x => IsValidValue(x.Target) && IsValidValue(x.Estimation));
|
---|
80 | var target = filteredResult.Select(x => x.Target);
|
---|
81 | var estimation = filteredResult.Select(x => x.Estimation);
|
---|
82 | double a, b;
|
---|
83 | if (filteredResult.Count() > 2) {
|
---|
84 | double tMean = target.Sum() / target.Count();
|
---|
85 | double xMean = estimation.Sum() / estimation.Count();
|
---|
86 | double sumXT = 0;
|
---|
87 | double sumXX = 0;
|
---|
88 | foreach (var r in result) {
|
---|
89 | double x = r.Estimation;
|
---|
90 | double t = r.Target;
|
---|
91 | sumXT += (x - xMean) * (t - tMean);
|
---|
92 | sumXX += (x - xMean) * (x - xMean);
|
---|
93 | }
|
---|
94 | b = sumXT / sumXX;
|
---|
95 | a = tMean - b * xMean;
|
---|
96 | } else {
|
---|
97 | b = 1.0;
|
---|
98 | a = 0.0;
|
---|
99 | }
|
---|
100 | double mean = dataset.GetMean(targetVariable, start, end);
|
---|
101 | double range = dataset.GetRange(targetVariable, start, end);
|
---|
102 | double minEstimatedValue = mean - punishmentFactor * range;
|
---|
103 | double maxEstimatedValue = mean + punishmentFactor * range;
|
---|
104 | evaluator.LowerEvaluationLimit = minEstimatedValue;
|
---|
105 | evaluator.UpperEvaluationLimit = maxEstimatedValue;
|
---|
106 | var resultModel = new GeneticProgrammingModel(MakeSum(MakeProduct(model.FunctionTree, b), a));
|
---|
107 | return new Predictor(evaluator, resultModel, minEstimatedValue, maxEstimatedValue);
|
---|
108 | }
|
---|
109 |
|
---|
110 | private static bool IsValidValue(double d) {
|
---|
111 | return !double.IsInfinity(d) && !double.IsNaN(d);
|
---|
112 | }
|
---|
113 |
|
---|
114 |
|
---|
115 | private static IFunctionTree MakeSum(IFunctionTree tree, double x) {
|
---|
116 | if (x.IsAlmost(0.0)) return tree;
|
---|
117 | var sum = (new Addition()).GetTreeNode();
|
---|
118 | sum.AddSubTree(tree);
|
---|
119 | sum.AddSubTree(MakeConstant(x));
|
---|
120 | return sum;
|
---|
121 | }
|
---|
122 |
|
---|
123 | private static IFunctionTree MakeProduct(IFunctionTree tree, double a) {
|
---|
124 | if (a.IsAlmost(1.0)) return tree;
|
---|
125 | var prod = (new Multiplication()).GetTreeNode();
|
---|
126 | prod.AddSubTree(tree);
|
---|
127 | prod.AddSubTree(MakeConstant(a));
|
---|
128 | return prod;
|
---|
129 | }
|
---|
130 |
|
---|
131 | private static IFunctionTree MakeConstant(double x) {
|
---|
132 | var constX = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
133 | constX.Value = x;
|
---|
134 | return constX;
|
---|
135 | }
|
---|
136 |
|
---|
137 | private static void CalculateScalingParameters(IEnumerable<double> xs, IEnumerable<double> ys, out double k, out double d) {
|
---|
138 | if (xs.Count() != ys.Count()) throw new ArgumentException();
|
---|
139 | double xMean = xs.Sum() / xs.Count();
|
---|
140 | double yMean = ys.Sum() / ys.Count();
|
---|
141 |
|
---|
142 | var yEnumerator = ys.GetEnumerator();
|
---|
143 | var xEnumerator = xs.GetEnumerator();
|
---|
144 |
|
---|
145 | double sumXY = 0.0;
|
---|
146 | double sumXX = 0.0;
|
---|
147 | while (xEnumerator.MoveNext() && yEnumerator.MoveNext()) {
|
---|
148 | sumXY += (xEnumerator.Current - xMean) * (yEnumerator.Current - yMean);
|
---|
149 | sumXX += (xEnumerator.Current - xMean) * (xEnumerator.Current - xMean);
|
---|
150 | }
|
---|
151 |
|
---|
152 | k = sumXY / sumXX;
|
---|
153 | d = yMean - k * xMean;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|