1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 |
|
---|
30 |
|
---|
31 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
32 | public class ROCAnalyzer : OperatorBase {
|
---|
33 | private ItemList myRocValues;
|
---|
34 | private ItemList<DoubleData> myAucValues;
|
---|
35 |
|
---|
36 |
|
---|
37 | public override string Description {
|
---|
38 | get { return @"Calculate TPR & FPR for various thresholds on dataset"; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | public ROCAnalyzer()
|
---|
42 | : base() {
|
---|
43 | AddVariableInfo(new VariableInfo("Values", "Item list holding the estimated and original values for the ROCAnalyzer", typeof(ItemList), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("ROCValues", "The values of the ROCAnalyzer, namely TPR & FPR", typeof(ItemList), VariableKind.New | VariableKind.Out));
|
---|
45 | AddVariableInfo(new VariableInfo("AUCValues", "The AUC Values for each ROC", typeof(ItemList<DoubleData>), VariableKind.New | VariableKind.Out));
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override IOperation Apply(IScope scope) {
|
---|
49 | #region initialize HL-variables
|
---|
50 | ItemList values = GetVariableValue<ItemList>("Values", scope, true);
|
---|
51 | myRocValues = GetVariableValue<ItemList>("ROCValues", scope, false, false);
|
---|
52 | if (myRocValues == null) {
|
---|
53 | myRocValues = new ItemList();
|
---|
54 | IVariableInfo info = GetVariableInfo("ROCValues");
|
---|
55 | if (info.Local)
|
---|
56 | AddVariable(new HeuristicLab.Core.Variable(info.ActualName, myRocValues));
|
---|
57 | else
|
---|
58 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), myRocValues));
|
---|
59 | } else {
|
---|
60 | myRocValues.Clear();
|
---|
61 | }
|
---|
62 |
|
---|
63 | myAucValues = GetVariableValue<ItemList<DoubleData>>("AUCValues", scope, false, false);
|
---|
64 | if (myAucValues == null) {
|
---|
65 | myAucValues = new ItemList<DoubleData>();
|
---|
66 | IVariableInfo info = GetVariableInfo("AUCValues");
|
---|
67 | if (info.Local)
|
---|
68 | AddVariable(new HeuristicLab.Core.Variable(info.ActualName, myAucValues));
|
---|
69 | else
|
---|
70 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), myAucValues));
|
---|
71 | } else {
|
---|
72 | myAucValues.Clear();
|
---|
73 | }
|
---|
74 | #endregion
|
---|
75 |
|
---|
76 | //calculate new ROC Values
|
---|
77 | double estimated = 0.0;
|
---|
78 | double original = 0.0;
|
---|
79 |
|
---|
80 | //initialize classes dictionary
|
---|
81 | SortedDictionary<double, List<double>> classes = new SortedDictionary<double, List<double>>();
|
---|
82 | foreach (ItemList value in values) {
|
---|
83 | estimated = ((DoubleData)value[0]).Data;
|
---|
84 | original = ((DoubleData)value[1]).Data;
|
---|
85 | if (!classes.ContainsKey(original))
|
---|
86 | classes[original] = new List<double>();
|
---|
87 | classes[original].Add(estimated);
|
---|
88 | }
|
---|
89 | foreach (double key in classes.Keys)
|
---|
90 | classes[key].Sort();
|
---|
91 |
|
---|
92 | //calculate ROC Curve
|
---|
93 | foreach (double key in classes.Keys) {
|
---|
94 | CalculateBestROC(key, classes);
|
---|
95 | }
|
---|
96 |
|
---|
97 | return null;
|
---|
98 | }
|
---|
99 |
|
---|
100 | protected void CalculateBestROC(double positiveClassKey, SortedDictionary<double, List<double>> classes) {
|
---|
101 | List<KeyValuePair<double, double>> rocCharacteristics;
|
---|
102 | List<KeyValuePair<double, double>> bestROC;
|
---|
103 | List<KeyValuePair<double, double>> actROC;
|
---|
104 |
|
---|
105 | List<double> negatives = new List<double>();
|
---|
106 | foreach (double key in classes.Keys) {
|
---|
107 | if (key != positiveClassKey)
|
---|
108 | negatives.AddRange(classes[key]);
|
---|
109 | }
|
---|
110 | List<double> actNegatives = negatives.Where<double>(value => value < classes[positiveClassKey].Max<double>()).ToList<double>();
|
---|
111 | actNegatives.Add(classes[positiveClassKey].Max<double>());
|
---|
112 | actNegatives.Sort();
|
---|
113 | actNegatives = actNegatives.Reverse<double>().ToList<double>();
|
---|
114 |
|
---|
115 | double bestAUC = double.MinValue;
|
---|
116 | double actAUC = 0;
|
---|
117 | //first class
|
---|
118 | if (classes.Keys.ElementAt<double>(0) == positiveClassKey) {
|
---|
119 | rocCharacteristics = null;
|
---|
120 | CalculateROCValuesAndAUC(classes[positiveClassKey], actNegatives, negatives.Count, double.MinValue, ref rocCharacteristics, out actROC, out actAUC);
|
---|
121 | myAucValues.Add(new DoubleData(actAUC));
|
---|
122 | myRocValues.Add(Convert(actROC));
|
---|
123 | }
|
---|
124 | //middle classes
|
---|
125 | else if (classes.Keys.ElementAt<double>(classes.Keys.Count - 1) != positiveClassKey) {
|
---|
126 | rocCharacteristics = null;
|
---|
127 | bestROC = new List<KeyValuePair<double, double>>();
|
---|
128 | foreach (double minThreshold in classes[positiveClassKey].Distinct<double>()) {
|
---|
129 | CalculateROCValuesAndAUC(classes[positiveClassKey], actNegatives, negatives.Count, minThreshold, ref rocCharacteristics, out actROC, out actAUC);
|
---|
130 | if (actAUC > bestAUC) {
|
---|
131 | bestAUC = actAUC;
|
---|
132 | bestROC = actROC;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | myAucValues.Add(new DoubleData(bestAUC));
|
---|
136 | myRocValues.Add(Convert(bestROC));
|
---|
137 |
|
---|
138 | } else { //last class
|
---|
139 | actNegatives = negatives.Where<double>(value => value > classes[positiveClassKey].Min<double>()).ToList<double>();
|
---|
140 | actNegatives.Add(classes[positiveClassKey].Min<double>());
|
---|
141 | actNegatives.Sort();
|
---|
142 | CalculateROCValuesAndAUCForLastClass(classes[positiveClassKey], actNegatives, negatives.Count, out bestROC, out bestAUC);
|
---|
143 | myAucValues.Add(new DoubleData(bestAUC));
|
---|
144 | myRocValues.Add(Convert(bestROC));
|
---|
145 |
|
---|
146 | }
|
---|
147 |
|
---|
148 | }
|
---|
149 |
|
---|
150 | protected void CalculateROCValuesAndAUC(List<double> positives, List<double> negatives, int negativesCount, double minThreshold,
|
---|
151 | ref List<KeyValuePair<double, double>> rocCharacteristics, out List<KeyValuePair<double, double>> roc, out double auc) {
|
---|
152 | double actTP = -1;
|
---|
153 | double actFP = -1;
|
---|
154 | double oldTP = -1;
|
---|
155 | double oldFP = -1;
|
---|
156 | auc = 0;
|
---|
157 | roc = new List<KeyValuePair<double, double>>();
|
---|
158 |
|
---|
159 | actTP = positives.Count<double>(value => minThreshold <= value && value <= negatives.Max<double>());
|
---|
160 | actFP = negatives.Count<double>(value => minThreshold <= value );
|
---|
161 | //add point (1,TPR) for AUC 'correct' calculation
|
---|
162 | roc.Add(new KeyValuePair<double, double>(1, actTP / positives.Count));
|
---|
163 | oldTP = actTP;
|
---|
164 | oldFP = negativesCount;
|
---|
165 | roc.Add(new KeyValuePair<double, double>(actFP / negativesCount, actTP / positives.Count));
|
---|
166 |
|
---|
167 | if (rocCharacteristics == null) {
|
---|
168 | rocCharacteristics = new List<KeyValuePair<double, double>>();
|
---|
169 | foreach (double maxThreshold in negatives.Distinct<double>()) {
|
---|
170 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
171 | oldTP = actTP;
|
---|
172 | oldFP = actFP;
|
---|
173 | actTP = positives.Count<double>(value => minThreshold <= value && value < maxThreshold);
|
---|
174 | actFP = negatives.Count<double>(value => minThreshold <= value && value < maxThreshold);
|
---|
175 | rocCharacteristics.Add(new KeyValuePair<double, double>(oldTP - actTP, oldFP - actFP));
|
---|
176 | roc.Add(new KeyValuePair<double, double>(actFP / negativesCount, actTP / positives.Count));
|
---|
177 |
|
---|
178 | //stop calculation if truePositiveRate == 0 => straight line with y=0 & save runtime
|
---|
179 | if ((actTP == 0) || (actFP == 0))
|
---|
180 | break;
|
---|
181 | }
|
---|
182 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
183 | } else { //characteristics of ROCs calculated
|
---|
184 | foreach (KeyValuePair<double, double> rocCharac in rocCharacteristics) {
|
---|
185 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
186 | oldTP = actTP;
|
---|
187 | oldFP = actFP;
|
---|
188 | actTP = oldTP - rocCharac.Key;
|
---|
189 | actFP = oldFP - rocCharac.Value;
|
---|
190 | roc.Add(new KeyValuePair<double, double>(actFP / negativesCount, actTP / positives.Count));
|
---|
191 | if ((actTP == 0) || (actFP == 0))
|
---|
192 | break;
|
---|
193 | }
|
---|
194 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | protected void CalculateROCValuesAndAUCForLastClass(List<double> positives, List<double> negatives, int negativesCount,
|
---|
199 | out List<KeyValuePair<double, double>> roc, out double auc) {
|
---|
200 | double actTP = -1;
|
---|
201 | double actFP = -1;
|
---|
202 | double oldTP = -1;
|
---|
203 | double oldFP = -1;
|
---|
204 | auc = 0;
|
---|
205 | roc = new List<KeyValuePair<double, double>>();
|
---|
206 |
|
---|
207 | actTP = positives.Count<double>(value => value >= negatives.Min<double>());
|
---|
208 | actFP = negatives.Count<double>(value => value >= negatives.Min<double>());
|
---|
209 | //add point (1,TPR) for AUC 'correct' calculation
|
---|
210 | roc.Add(new KeyValuePair<double, double>(1, actTP / positives.Count));
|
---|
211 | oldTP = actTP;
|
---|
212 | oldFP = negativesCount;
|
---|
213 | roc.Add(new KeyValuePair<double, double>(actFP / negativesCount, actTP / positives.Count));
|
---|
214 |
|
---|
215 | foreach (double minThreshold in negatives.Distinct<double>()) {
|
---|
216 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
217 | oldTP = actTP;
|
---|
218 | oldFP = actFP;
|
---|
219 | actTP = positives.Count<double>(value => minThreshold < value);
|
---|
220 | actFP = negatives.Count<double>(value => minThreshold < value);
|
---|
221 | roc.Add(new KeyValuePair<double, double>(actFP / negativesCount, actTP / positives.Count));
|
---|
222 |
|
---|
223 | //stop calculation if truePositiveRate == 0 => straight line with y=0 & save runtime
|
---|
224 | if (actTP == 0 || actFP==0)
|
---|
225 | break;
|
---|
226 | }
|
---|
227 | auc += ((oldTP + actTP) / positives.Count) * ((oldFP - actFP) / negativesCount) / 2;
|
---|
228 |
|
---|
229 | }
|
---|
230 |
|
---|
231 | private ItemList Convert(List<KeyValuePair<double, double>> data) {
|
---|
232 | ItemList list = new ItemList();
|
---|
233 | ItemList row;
|
---|
234 | foreach (KeyValuePair<double, double> dataPoint in data) {
|
---|
235 | row = new ItemList();
|
---|
236 | row.Add(new DoubleData(dataPoint.Key));
|
---|
237 | row.Add(new DoubleData(dataPoint.Value));
|
---|
238 | list.Add(row);
|
---|
239 | }
|
---|
240 | return list;
|
---|
241 | }
|
---|
242 |
|
---|
243 | }
|
---|
244 |
|
---|
245 | }
|
---|