[645] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
[2328] | 25 | using HeuristicLab.Common;
|
---|
[645] | 26 |
|
---|
[668] | 27 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
[702] | 28 | public class ClassificationMeanSquaredErrorEvaluator : GPClassificationEvaluatorBase {
|
---|
| 29 | private const double EPSILON = 1.0E-7;
|
---|
[645] | 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
|
---|
| 33 | for the estimated values vs. the real values of 'TargetVariable'.";
|
---|
| 34 | }
|
---|
| 35 | }
|
---|
| 36 |
|
---|
| 37 | public ClassificationMeanSquaredErrorEvaluator()
|
---|
| 38 | : base() {
|
---|
[702] | 39 | AddVariableInfo(new VariableInfo("MSE", "The mean squared error of the model", typeof(DoubleData), VariableKind.New));
|
---|
[645] | 40 | }
|
---|
| 41 |
|
---|
[1891] | 42 | public override void Evaluate(IScope scope, ITreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
|
---|
[645] | 43 | double errorsSquaredSum = 0;
|
---|
[712] | 44 | for (int sample = start; sample < end; sample++) {
|
---|
[1891] | 45 | double estimated = evaluator.Evaluate(sample);
|
---|
[712] | 46 | double original = dataset.GetValue(sample, targetVariable);
|
---|
| 47 | if (!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
[645] | 48 | double error = estimated - original;
|
---|
| 49 | // between classes use squared error
|
---|
| 50 | // on the lower end and upper end only add linear error if the absolute error is larger than 1
|
---|
| 51 | // the error>1.0 constraint is needed for balance because in the interval ]-1, 1[ the squared error is smaller than the absolute error
|
---|
[2328] | 52 | if ((original.IsAlmost(classes[0]) && error < -1.0) ||
|
---|
| 53 | (original.IsAlmost(classes[classes.Length - 1]) && error > 1.0)) {
|
---|
[645] | 54 | errorsSquaredSum += Math.Abs(error); // only add linear error below the smallest class or above the largest class
|
---|
| 55 | } else {
|
---|
| 56 | errorsSquaredSum += error * error;
|
---|
| 57 | }
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | errorsSquaredSum /= (end - start);
|
---|
[712] | 62 | if (double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
[645] | 63 | errorsSquaredSum = double.MaxValue;
|
---|
| 64 | }
|
---|
[702] | 65 |
|
---|
| 66 | DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
|
---|
[712] | 67 | if (mse == null) {
|
---|
[702] | 68 | mse = new DoubleData();
|
---|
| 69 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
|
---|
| 70 | }
|
---|
| 71 |
|
---|
[645] | 72 | mse.Data = errorsSquaredSum;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | }
|
---|