[3062] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[4722] | 23 | using HeuristicLab.Common;
|
---|
[3062] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Encodings.BinaryVectorEncoding {
|
---|
| 28 | /// <summary>
|
---|
| 29 | /// Uniform crossover for binary vectors.
|
---|
| 30 | /// </summary>
|
---|
| 31 | /// <remarks>
|
---|
| 32 | /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.
|
---|
| 33 | /// </remarks>
|
---|
| 34 | [Item("UniformCrossover", "Uniform crossover for binary vectors. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")]
|
---|
| 35 | [StorableClass]
|
---|
[4722] | 36 | public sealed class UniformCrossover : BinaryVectorCrossover {
|
---|
| 37 |
|
---|
| 38 | [StorableConstructor]
|
---|
| 39 | private UniformCrossover(bool deserializing) : base(deserializing) { }
|
---|
| 40 | private UniformCrossover(UniformCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
| 41 | public UniformCrossover() : base() { }
|
---|
| 42 |
|
---|
| 43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 44 | return new UniformCrossover(this, cloner);
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[3062] | 47 | /// <summary>
|
---|
| 48 | /// Performs a uniform crossover between two binary vectors.
|
---|
| 49 | /// </summary>
|
---|
| 50 | /// <param name="random">A random number generator.</param>
|
---|
| 51 | /// <param name="parent1">The first parent for crossover.</param>
|
---|
| 52 | /// <param name="parent2">The second parent for crossover.</param>
|
---|
| 53 | /// <returns>The newly created binary vector, resulting from the uniform crossover.</returns>
|
---|
| 54 | public static BinaryVector Apply(IRandom random, BinaryVector parent1, BinaryVector parent2) {
|
---|
| 55 | if (parent1.Length != parent2.Length)
|
---|
| 56 | throw new ArgumentException("UniformCrossover: The parents are of different length.");
|
---|
| 57 |
|
---|
| 58 | int length = parent1.Length;
|
---|
| 59 | bool[] result = new bool[length];
|
---|
| 60 |
|
---|
| 61 | for (int i = 0; i < length; i++) {
|
---|
| 62 | if (random.NextDouble() < 0.5)
|
---|
| 63 | result[i] = parent1[i];
|
---|
| 64 | else
|
---|
| 65 | result[i] = parent2[i];
|
---|
| 66 | }
|
---|
[4068] | 67 |
|
---|
[3062] | 68 | return new BinaryVector(result);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | /// <summary>
|
---|
| 72 | /// Performs a uniform crossover at a randomly chosen position of two
|
---|
| 73 | /// given parent binary vectors.
|
---|
| 74 | /// </summary>
|
---|
| 75 | /// <exception cref="ArgumentException">Thrown if there are not exactly two parents.</exception>
|
---|
| 76 | /// <param name="random">A random number generator.</param>
|
---|
| 77 | /// <param name="parents">An array containing the two binary vectors that should be crossed.</param>
|
---|
| 78 | /// <returns>The newly created binary vector, resulting from the uniform crossover.</returns>
|
---|
| 79 | protected override BinaryVector Cross(IRandom random, ItemArray<BinaryVector> parents) {
|
---|
| 80 | if (parents.Length != 2) throw new ArgumentException("ERROR in UniformCrossover: The number of parents is not equal to 2");
|
---|
| 81 |
|
---|
| 82 | return Apply(random, parents[0], parents[1]);
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | }
|
---|