Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.ES/3.2/SelfAdaptiveMutationStrengthAdjuster.cs @ 2036

Last change on this file since 2036 was 1529, checked in by gkronber, 16 years ago

Moved source files of plugins AdvancedOptimizationFrontEnd ... Grid into version-specific sub-folders. #576

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Text;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Random;
28
29namespace HeuristicLab.ES {
30  /// <summary>
31  /// Mutates the endogenous strategy parameters.
32  /// </summary>
33  public class SelfAdaptiveMutationStrengthAdjuster : OperatorBase {
34    /// <inheritdoc select="summary"/>
35    public override string Description {
36      get { return @"Mutates the endogenous strategy parameters"; }
37    }
38
39    /// <summary>
40    /// Initializes a new instance of <see cref="SelfAdaptiveMutationStrengthAdjuster"/> with four
41    /// variable infos (<c>Random</c>, <c>StrategyVector</c>, <c>GeneralLearningRate</c> and
42    /// <c>LearningRate</c>).
43    /// </summary>
44    public SelfAdaptiveMutationStrengthAdjuster()
45      : base() {
46      AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(IRandom), VariableKind.In));
47      AddVariableInfo(new VariableInfo("StrategyVector", "Vector containing the endogenous strategy parameters", typeof(DoubleArrayData), VariableKind.In));
48      AddVariableInfo(new VariableInfo("GeneralLearningRate", "The general learning rate will scale all mutations. It's influence is calculated as: e^(GeneralLearningRate*N(0,1))", typeof(DoubleData), VariableKind.In));
49      AddVariableInfo(new VariableInfo("LearningRate", "Learning parameter defines the strength of the adaption of each component in the object parameter vector", typeof(DoubleData), VariableKind.In));
50    }
51
52    /// <summary>
53    /// Mutates the endogenous strategy parameters.
54    /// </summary>
55    /// <remarks>Calls <see cref="OperatorBase.Apply"/> of base class <see cref="OperatorBase"/>.</remarks>
56    /// <param name="scope">The current scope to mutate.</param>
57    /// <inheritdoc select="returns"/>
58    public override IOperation Apply(IScope scope) {
59      IRandom random = GetVariableValue<IRandom>("Random", scope, true);
60      double[] strategyParams = GetVariableValue<DoubleArrayData>("StrategyVector", scope, false).Data;
61      double tau = GetVariableValue<DoubleData>("LearningRate", scope, true).Data;
62      double tau0 = GetVariableValue<DoubleData>("GeneralLearningRate", scope, true).Data;
63
64      NormalDistributedRandom N = new NormalDistributedRandom(random, 0.0, 1.0);
65      double generalMultiplier = Math.Exp(tau0 * N.NextDouble());
66      for (int i = 0; i < strategyParams.Length; i++) {
67        strategyParams[i] *= generalMultiplier * Math.Exp(tau * N.NextDouble());
68      }
69      return base.Apply(scope);
70    }
71  }
72}
Note: See TracBrowser for help on using the repository browser.