1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using HeuristicLab.PluginInfrastructure;
|
---|
27 | using System.Net;
|
---|
28 | using System.ServiceModel;
|
---|
29 | using HeuristicLab.CEDMA.DB.Interfaces;
|
---|
30 | using HeuristicLab.CEDMA.DB;
|
---|
31 | using System.ServiceModel.Description;
|
---|
32 | using System.Linq;
|
---|
33 | using HeuristicLab.CEDMA.Core;
|
---|
34 | using HeuristicLab.GP.StructureIdentification;
|
---|
35 | using HeuristicLab.Data;
|
---|
36 | using HeuristicLab.Core;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.CEDMA.Server {
|
---|
39 | public abstract class DispatcherBase : IDispatcher {
|
---|
40 | public enum ModelComplexity { Low, Medium, High };
|
---|
41 | public enum Algorithm { StandardGpRegression, OffspringGpRegression, StandardGpClassification, OffspringGpClassification, StandardGpForecasting, OffspringGpForecasting };
|
---|
42 |
|
---|
43 | private IStore store;
|
---|
44 | private ModelComplexity[] possibleComplexities = new ModelComplexity[] { ModelComplexity.Low, ModelComplexity.Medium, ModelComplexity.High };
|
---|
45 | private Dictionary<LearningTask, Algorithm[]> possibleAlgorithms = new Dictionary<LearningTask, Algorithm[]>() {
|
---|
46 | {LearningTask.Classification, new Algorithm[] { Algorithm.StandardGpClassification, Algorithm.OffspringGpClassification }},
|
---|
47 | {LearningTask.Regression, new Algorithm[] { Algorithm.StandardGpRegression, Algorithm.OffspringGpRegression }},
|
---|
48 | {LearningTask.TimeSeries, new Algorithm[] { Algorithm.StandardGpForecasting, Algorithm.OffspringGpForecasting }}
|
---|
49 | };
|
---|
50 |
|
---|
51 | private static int MaxGenerations {
|
---|
52 | get { return 3; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | private static int MaxEvaluatedSolutions {
|
---|
56 | get { return 3000; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public DispatcherBase(IStore store) {
|
---|
60 | this.store = store;
|
---|
61 | }
|
---|
62 |
|
---|
63 | public Execution GetNextJob() {
|
---|
64 | // find and select a dataset
|
---|
65 | var dataSetVar = new HeuristicLab.CEDMA.DB.Interfaces.Variable("DataSet");
|
---|
66 | var dataSetQuery = new Statement[] {
|
---|
67 | new Statement(dataSetVar, Ontology.PredicateInstanceOf, Ontology.TypeDataSet)
|
---|
68 | };
|
---|
69 |
|
---|
70 | Entity[] datasets = store.Query("?DataSet <" + Ontology.PredicateInstanceOf.Uri + "> <" + Ontology.TypeDataSet.Uri + "> .", 0, 100)
|
---|
71 | .Select(x => (Entity)x.Get("DataSet"))
|
---|
72 | .ToArray();
|
---|
73 |
|
---|
74 | // no datasets => do nothing
|
---|
75 | if (datasets.Length == 0) return null;
|
---|
76 |
|
---|
77 | Entity dataSetEntity = SelectDataSet(datasets);
|
---|
78 | DataSet dataSet = new DataSet(store, dataSetEntity);
|
---|
79 |
|
---|
80 | int targetVariable = SelectTargetVariable(dataSet, dataSet.Problem.AllowedTargetVariables.ToArray());
|
---|
81 | Algorithm selectedAlgorithm = SelectAlgorithm(dataSet, targetVariable, possibleAlgorithms[dataSet.Problem.LearningTask]);
|
---|
82 | string targetVariableName = dataSet.Problem.GetVariableName(targetVariable);
|
---|
83 | ModelComplexity selectedComplexity = SelectComplexity(dataSet, targetVariable, selectedAlgorithm, possibleComplexities);
|
---|
84 |
|
---|
85 | Execution exec = CreateExecution(dataSet.Problem, targetVariable, selectedAlgorithm, selectedComplexity);
|
---|
86 | if (exec != null) {
|
---|
87 | exec.DataSetEntity = dataSetEntity;
|
---|
88 | exec.TargetVariable = targetVariableName;
|
---|
89 | }
|
---|
90 | return exec;
|
---|
91 | }
|
---|
92 |
|
---|
93 | public abstract Entity SelectDataSet(Entity[] datasets);
|
---|
94 | public abstract int SelectTargetVariable(DataSet dataSet, int[] targetVariables);
|
---|
95 | public abstract Algorithm SelectAlgorithm(DataSet dataSet, int targetVariable, Algorithm[] possibleAlgorithms);
|
---|
96 | public abstract ModelComplexity SelectComplexity(DataSet dataSet, int targetVariable, Algorithm algorithm, ModelComplexity[] possibleComplexities);
|
---|
97 |
|
---|
98 | private Execution CreateExecution(Problem problem, int targetVariable, Algorithm algorithm, ModelComplexity complexity) {
|
---|
99 | switch (algorithm) {
|
---|
100 | case Algorithm.StandardGpRegression: {
|
---|
101 | var algo = new HeuristicLab.GP.StructureIdentification.StandardGP();
|
---|
102 | SetComplexityParameters(algo, complexity);
|
---|
103 | SetProblemParameters(algo, problem, targetVariable);
|
---|
104 | algo.PopulationSize = 10000;
|
---|
105 | algo.MaxGenerations = MaxGenerations;
|
---|
106 | Execution exec = new Execution(algo.Engine);
|
---|
107 | exec.Description = "StandardGP - Complexity: " + complexity;
|
---|
108 | return exec;
|
---|
109 | }
|
---|
110 | case Algorithm.OffspringGpRegression: {
|
---|
111 | var algo = new HeuristicLab.GP.StructureIdentification.OffspringSelectionGP();
|
---|
112 | SetComplexityParameters(algo, complexity);
|
---|
113 | SetProblemParameters(algo, problem, targetVariable);
|
---|
114 | algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
|
---|
115 | Execution exec = new Execution(algo.Engine);
|
---|
116 | exec.Description = "OffspringGP - Complexity: " + complexity;
|
---|
117 | return exec;
|
---|
118 | }
|
---|
119 | case Algorithm.StandardGpClassification: {
|
---|
120 | var algo = new HeuristicLab.GP.StructureIdentification.Classification.StandardGP();
|
---|
121 | SetComplexityParameters(algo, complexity);
|
---|
122 | SetProblemParameters(algo, problem, targetVariable);
|
---|
123 | algo.PopulationSize = 10000;
|
---|
124 | algo.MaxGenerations = MaxGenerations;
|
---|
125 | Execution exec = new Execution(algo.Engine);
|
---|
126 | exec.Description = "StandardGP - Complexity: " + complexity;
|
---|
127 | return exec;
|
---|
128 | }
|
---|
129 | case Algorithm.OffspringGpClassification: {
|
---|
130 | var algo = new HeuristicLab.GP.StructureIdentification.Classification.OffspringSelectionGP();
|
---|
131 | SetComplexityParameters(algo, complexity);
|
---|
132 | SetProblemParameters(algo, problem, targetVariable);
|
---|
133 | algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
|
---|
134 | Execution exec = new Execution(algo.Engine);
|
---|
135 | exec.Description = "OffspringGP - Complexity: " + complexity;
|
---|
136 | return exec;
|
---|
137 | }
|
---|
138 | case Algorithm.StandardGpForecasting: {
|
---|
139 | var algo = new HeuristicLab.GP.StructureIdentification.TimeSeries.StandardGP();
|
---|
140 | SetComplexityParameters(algo, complexity);
|
---|
141 | SetProblemParameters(algo, problem, targetVariable);
|
---|
142 | algo.PopulationSize = 10000;
|
---|
143 | algo.MaxGenerations = MaxGenerations;
|
---|
144 | Execution exec = new Execution(algo.Engine);
|
---|
145 | exec.Description = "StandardGP - Complexity: " + complexity;
|
---|
146 | return exec;
|
---|
147 | }
|
---|
148 | case Algorithm.OffspringGpForecasting: {
|
---|
149 | var algo = new HeuristicLab.GP.StructureIdentification.TimeSeries.OffspringSelectionGP();
|
---|
150 | SetComplexityParameters(algo, complexity);
|
---|
151 | SetProblemParameters(algo, problem, targetVariable);
|
---|
152 | algo.MaxEvaluatedSolutions = MaxEvaluatedSolutions;
|
---|
153 | Execution exec = new Execution(algo.Engine);
|
---|
154 | exec.Description = "OffspringGP - Complexity: " + complexity;
|
---|
155 | return exec;
|
---|
156 | }
|
---|
157 | default: {
|
---|
158 | return null;
|
---|
159 | }
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | private void SetComplexityParameters(AlgorithmBase algo, ModelComplexity complexity) {
|
---|
164 | switch (complexity) {
|
---|
165 | case ModelComplexity.Low: {
|
---|
166 | algo.MaxTreeHeight = 5;
|
---|
167 | algo.MaxTreeSize = 20;
|
---|
168 | break;
|
---|
169 | }
|
---|
170 | case ModelComplexity.Medium: {
|
---|
171 | algo.MaxTreeHeight = 10;
|
---|
172 | algo.MaxTreeSize = 100;
|
---|
173 | break;
|
---|
174 | }
|
---|
175 | case ModelComplexity.High: {
|
---|
176 | algo.MaxTreeHeight = 12;
|
---|
177 | algo.MaxTreeSize = 200;
|
---|
178 | break;
|
---|
179 | }
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | private void SetProblemParameters(AlgorithmBase algo, Problem problem, int targetVariable) {
|
---|
184 | algo.ProblemInjector.GetVariable("Dataset").Value = problem.DataSet;
|
---|
185 | algo.ProblemInjector.GetVariable("TargetVariable").GetValue<IntData>().Data = targetVariable;
|
---|
186 | algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue<IntData>().Data = problem.TrainingSamplesStart;
|
---|
187 | algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue<IntData>().Data = problem.TrainingSamplesEnd;
|
---|
188 | algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue<IntData>().Data = problem.ValidationSamplesStart;
|
---|
189 | algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue<IntData>().Data = problem.ValidationSamplesEnd;
|
---|
190 | algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue<IntData>().Data = problem.TestSamplesStart;
|
---|
191 | algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue<IntData>().Data = problem.TestSamplesEnd;
|
---|
192 | ItemList<IntData> allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue<ItemList<IntData>>();
|
---|
193 | foreach (int allowedFeature in problem.AllowedInputVariables) allowedFeatures.Add(new IntData(allowedFeature));
|
---|
194 |
|
---|
195 | if (problem.LearningTask == LearningTask.TimeSeries) {
|
---|
196 | algo.ProblemInjector.GetVariable("Autoregressive").GetValue<BoolData>().Data = problem.AutoRegressive;
|
---|
197 | algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue<IntData>().Data = problem.MinTimeOffset;
|
---|
198 | algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue<IntData>().Data = problem.MaxTimeOffset;
|
---|
199 | } else if (problem.LearningTask == LearningTask.Classification) {
|
---|
200 | ItemList<DoubleData> classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue<ItemList<DoubleData>>();
|
---|
201 | foreach (double classValue in GetDifferentClassValues(problem.DataSet, targetVariable)) classValues.Add(new DoubleData(classValue));
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | private IEnumerable<double> GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) {
|
---|
206 | return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct();
|
---|
207 | }
|
---|
208 | }
|
---|
209 | }
|
---|