[8478] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Analysis {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// An operator for analyzing the solution diversity in a population.
|
---|
| 35 | /// </summary>
|
---|
| 36 | [Item("SingleObjectivePopulationDiversityAnalyzer", "An operator for analyzing the solution diversity in a population.")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public class SingleObjectivePopulationDiversityAnalyzer : SingleSuccessorOperator, IAnalyzer, ISimilarityBasedOperator {
|
---|
| 39 | #region ISimilarityBasedOperator Members
|
---|
| 40 | public ISolutionSimilarityCalculator SimilarityCalculator { get; set; }
|
---|
| 41 | #endregion
|
---|
| 42 |
|
---|
| 43 | public virtual bool EnabledByDefault {
|
---|
| 44 | get { return false; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public ScopeParameter CurrentScopeParameter {
|
---|
| 48 | get { return (ScopeParameter)Parameters["CurrentScope"]; }
|
---|
| 49 | }
|
---|
| 50 | public LookupParameter<BoolValue> MaximizationParameter {
|
---|
| 51 | get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
| 52 | }
|
---|
| 53 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 54 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 55 | }
|
---|
| 56 | public ValueLookupParameter<ResultCollection> ResultsParameter {
|
---|
| 57 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 58 | }
|
---|
| 59 | public ValueParameter<BoolValue> StoreHistoryParameter {
|
---|
| 60 | get { return (ValueParameter<BoolValue>)Parameters["StoreHistory"]; }
|
---|
| 61 | }
|
---|
| 62 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
| 63 | get { return (ValueParameter<IntValue>)Parameters["UpdateInterval"]; }
|
---|
| 64 | }
|
---|
| 65 | public LookupParameter<IntValue> UpdateCounterParameter {
|
---|
| 66 | get { return (LookupParameter<IntValue>)Parameters["UpdateCounter"]; }
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | [StorableConstructor]
|
---|
| 70 | protected SingleObjectivePopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 71 | protected SingleObjectivePopulationDiversityAnalyzer(SingleObjectivePopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 72 | public SingleObjectivePopulationDiversityAnalyzer()
|
---|
| 73 | : base() {
|
---|
| 74 | Parameters.Add(new ScopeParameter("CurrentScope", "The current scope that contains the solutions which should be analyzed."));
|
---|
| 75 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem."));
|
---|
| 76 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the solutions which should be analyzed."));
|
---|
| 77 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The result collection where the population diversity analysis results should be stored."));
|
---|
| 78 | Parameters.Add(new ValueParameter<BoolValue>("StoreHistory", "True if the history of the population diversity analysis should be stored.", new BoolValue(false)));
|
---|
| 79 | Parameters.Add(new ValueParameter<IntValue>("UpdateInterval", "The interval in which the population diversity analysis should be applied.", new IntValue(1)));
|
---|
| 80 | Parameters.Add(new LookupParameter<IntValue>("UpdateCounter", "The value which counts how many times the operator was called since the last update.", "PopulationDiversityAnalyzerUpdateCounter"));
|
---|
| 81 |
|
---|
| 82 | MaximizationParameter.Hidden = true;
|
---|
| 83 | QualityParameter.Hidden = true;
|
---|
| 84 | ResultsParameter.Hidden = true;
|
---|
| 85 | UpdateCounterParameter.Hidden = true;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 89 | return new SingleObjectivePopulationDiversityAnalyzer(this, cloner);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public override IOperation Apply() {
|
---|
| 93 | int updateInterval = UpdateIntervalParameter.Value.Value;
|
---|
| 94 | IntValue updateCounter = UpdateCounterParameter.ActualValue;
|
---|
| 95 | // if counter does not yet exist then initialize it with update interval
|
---|
| 96 | // to make sure the solutions are analyzed on the first application of this operator
|
---|
| 97 | if (updateCounter == null) {
|
---|
| 98 | updateCounter = new IntValue(updateInterval);
|
---|
| 99 | UpdateCounterParameter.ActualValue = updateCounter;
|
---|
| 100 | } else updateCounter.Value++;
|
---|
| 101 |
|
---|
| 102 | //analyze solutions only every 'updateInterval' times
|
---|
| 103 | if (updateCounter.Value == updateInterval) {
|
---|
| 104 | updateCounter.Value = 0;
|
---|
| 105 |
|
---|
| 106 | bool max = MaximizationParameter.ActualValue.Value;
|
---|
| 107 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
| 108 | bool storeHistory = StoreHistoryParameter.Value.Value;
|
---|
| 109 | int count = CurrentScopeParameter.ActualValue.SubScopes.Count;
|
---|
| 110 |
|
---|
| 111 | if (count > 1) {
|
---|
| 112 | // calculate solution similarities
|
---|
| 113 | var similarityMatrix = SimilarityCalculator.CalculateSolutionCrowdSimilarity(CurrentScopeParameter.ActualValue);
|
---|
| 114 |
|
---|
| 115 | // sort similarities by quality
|
---|
| 116 | double[][] sortedSimilarityMatrix = null;
|
---|
| 117 | if (max)
|
---|
| 118 | sortedSimilarityMatrix = similarityMatrix
|
---|
| 119 | .Select((x, index) => new { Solutions = x, Quality = qualities[index] })
|
---|
| 120 | .OrderByDescending(x => x.Quality)
|
---|
| 121 | .Select(x => x.Solutions)
|
---|
| 122 | .ToArray();
|
---|
| 123 | else
|
---|
| 124 | sortedSimilarityMatrix = similarityMatrix
|
---|
| 125 | .Select((x, index) => new { Solutions = x, Quality = qualities[index] })
|
---|
| 126 | .OrderBy(x => x.Quality)
|
---|
| 127 | .Select(x => x.Solutions)
|
---|
| 128 | .ToArray();
|
---|
| 129 |
|
---|
| 130 | double[,] similarities = new double[similarityMatrix.Length, similarityMatrix[0].Length];
|
---|
| 131 | for (int i = 0; i < similarityMatrix.Length; i++)
|
---|
| 132 | for (int j = 0; j < similarityMatrix[0].Length; j++)
|
---|
| 133 | similarities[i, j] = similarityMatrix[i][j];
|
---|
| 134 |
|
---|
| 135 | // calculate minimum, average and maximum similarities
|
---|
| 136 | double similarity;
|
---|
| 137 | double[] minSimilarities = new double[count];
|
---|
| 138 | double[] avgSimilarities = new double[count];
|
---|
| 139 | double[] maxSimilarities = new double[count];
|
---|
| 140 | for (int i = 0; i < count; i++) {
|
---|
| 141 | minSimilarities[i] = 1;
|
---|
| 142 | avgSimilarities[i] = 0;
|
---|
| 143 | maxSimilarities[i] = 0;
|
---|
| 144 | for (int j = 0; j < count; j++) {
|
---|
| 145 | if (i != j) {
|
---|
| 146 | similarity = similarities[i, j];
|
---|
| 147 |
|
---|
| 148 | if ((similarity < 0) || (similarity > 1))
|
---|
| 149 | throw new InvalidOperationException("Solution similarities have to be in the interval [0;1].");
|
---|
| 150 |
|
---|
| 151 | if (minSimilarities[i] > similarity) minSimilarities[i] = similarity;
|
---|
| 152 | avgSimilarities[i] += similarity;
|
---|
| 153 | if (maxSimilarities[i] < similarity) maxSimilarities[i] = similarity;
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 | avgSimilarities[i] = avgSimilarities[i] / (count - 1);
|
---|
| 157 | }
|
---|
| 158 | double avgMinSimilarity = minSimilarities.Average();
|
---|
| 159 | double avgAvgSimilarity = avgSimilarities.Average();
|
---|
| 160 | double avgMaxSimilarity = maxSimilarities.Average();
|
---|
| 161 |
|
---|
| 162 | // fetch results collection
|
---|
| 163 | ResultCollection results;
|
---|
| 164 | if (!ResultsParameter.ActualValue.ContainsKey(Name + " Results")) {
|
---|
| 165 | results = new ResultCollection();
|
---|
| 166 | ResultsParameter.ActualValue.Add(new Result(Name + " Results", results));
|
---|
| 167 | } else {
|
---|
| 168 | results = (ResultCollection)ResultsParameter.ActualValue[Name + " Results"].Value;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | // store similarities
|
---|
| 172 | HeatMap similaritiesHeatMap = new HeatMap(similarities, "Solution Similarities", 0.0, 1.0);
|
---|
| 173 | if (!results.ContainsKey("Solution Similarities"))
|
---|
| 174 | results.Add(new Result("Solution Similarities", similaritiesHeatMap));
|
---|
| 175 | else
|
---|
| 176 | results["Solution Similarities"].Value = similaritiesHeatMap;
|
---|
| 177 |
|
---|
| 178 | // store similarities history
|
---|
| 179 | if (storeHistory) {
|
---|
| 180 | if (!results.ContainsKey("Solution Similarities History")) {
|
---|
| 181 | HeatMapHistory history = new HeatMapHistory();
|
---|
| 182 | history.Add(similaritiesHeatMap);
|
---|
| 183 | results.Add(new Result("Solution Similarities History", history));
|
---|
| 184 | } else {
|
---|
| 185 | ((HeatMapHistory)results["Solution Similarities History"].Value).Add(similaritiesHeatMap);
|
---|
| 186 | }
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | // store average minimum, average and maximum similarity
|
---|
| 190 | if (!results.ContainsKey("Average Minimum Solution Similarity"))
|
---|
| 191 | results.Add(new Result("Average Minimum Solution Similarity", new DoubleValue(avgMinSimilarity)));
|
---|
| 192 | else
|
---|
| 193 | ((DoubleValue)results["Average Minimum Solution Similarity"].Value).Value = avgMinSimilarity;
|
---|
| 194 |
|
---|
| 195 | if (!results.ContainsKey("Average Average Solution Similarity"))
|
---|
| 196 | results.Add(new Result("Average Average Solution Similarity", new DoubleValue(avgAvgSimilarity)));
|
---|
| 197 | else
|
---|
| 198 | ((DoubleValue)results["Average Average Solution Similarity"].Value).Value = avgAvgSimilarity;
|
---|
| 199 |
|
---|
| 200 | if (!results.ContainsKey("Average Maximum Solution Similarity"))
|
---|
| 201 | results.Add(new Result("Average Maximum Solution Similarity", new DoubleValue(avgMaxSimilarity)));
|
---|
| 202 | else
|
---|
| 203 | ((DoubleValue)results["Average Maximum Solution Similarity"].Value).Value = avgMaxSimilarity;
|
---|
| 204 |
|
---|
| 205 | // store average minimum, average and maximum solution similarity data table
|
---|
| 206 | DataTable minAvgMaxSimilarityDataTable;
|
---|
| 207 | if (!results.ContainsKey("Average Minimum/Average/Maximum Solution Similarity")) {
|
---|
| 208 | minAvgMaxSimilarityDataTable = new DataTable("Average Minimum/Average/Maximum Solution Similarity");
|
---|
| 209 | minAvgMaxSimilarityDataTable.VisualProperties.XAxisTitle = "Iteration";
|
---|
| 210 | minAvgMaxSimilarityDataTable.VisualProperties.YAxisTitle = "Solution Similarity";
|
---|
| 211 | minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Minimum Solution Similarity", null));
|
---|
| 212 | minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].VisualProperties.StartIndexZero = true;
|
---|
| 213 | minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Average Solution Similarity", null));
|
---|
| 214 | minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].VisualProperties.StartIndexZero = true;
|
---|
| 215 | minAvgMaxSimilarityDataTable.Rows.Add(new DataRow("Average Maximum Solution Similarity", null));
|
---|
| 216 | minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].VisualProperties.StartIndexZero = true;
|
---|
| 217 | results.Add(new Result("Average Minimum/Average/Maximum Solution Similarity", minAvgMaxSimilarityDataTable));
|
---|
| 218 | } else {
|
---|
| 219 | minAvgMaxSimilarityDataTable = (DataTable)results["Average Minimum/Average/Maximum Solution Similarity"].Value;
|
---|
| 220 | }
|
---|
| 221 | minAvgMaxSimilarityDataTable.Rows["Average Minimum Solution Similarity"].Values.Add(avgMinSimilarity);
|
---|
| 222 | minAvgMaxSimilarityDataTable.Rows["Average Average Solution Similarity"].Values.Add(avgAvgSimilarity);
|
---|
| 223 | minAvgMaxSimilarityDataTable.Rows["Average Maximum Solution Similarity"].Values.Add(avgMaxSimilarity);
|
---|
| 224 |
|
---|
| 225 | // store minimum, average, maximum similarities data table
|
---|
| 226 | DataTable minAvgMaxSimilaritiesDataTable = new DataTable("Minimum/Average/Maximum Solution Similarities");
|
---|
| 227 | minAvgMaxSimilaritiesDataTable.VisualProperties.XAxisTitle = "Solution Index";
|
---|
| 228 | minAvgMaxSimilaritiesDataTable.VisualProperties.YAxisTitle = "Solution Similarity";
|
---|
| 229 | minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Minimum Solution Similarity", null, minSimilarities));
|
---|
| 230 | minAvgMaxSimilaritiesDataTable.Rows["Minimum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 231 | minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Average Solution Similarity", null, avgSimilarities));
|
---|
| 232 | minAvgMaxSimilaritiesDataTable.Rows["Average Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 233 | minAvgMaxSimilaritiesDataTable.Rows.Add(new DataRow("Maximum Solution Similarity", null, maxSimilarities));
|
---|
| 234 | minAvgMaxSimilaritiesDataTable.Rows["Maximum Solution Similarity"].VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 235 | if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities")) {
|
---|
| 236 | results.Add(new Result("Minimum/Average/Maximum Solution Similarities", minAvgMaxSimilaritiesDataTable));
|
---|
| 237 | } else {
|
---|
| 238 | results["Minimum/Average/Maximum Solution Similarities"].Value = minAvgMaxSimilaritiesDataTable;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | // store minimum, average, maximum similarities history
|
---|
| 242 | if (storeHistory) {
|
---|
| 243 | if (!results.ContainsKey("Minimum/Average/Maximum Solution Similarities History")) {
|
---|
| 244 | DataTableHistory history = new DataTableHistory();
|
---|
| 245 | history.Add(minAvgMaxSimilaritiesDataTable);
|
---|
| 246 | results.Add(new Result("Minimum/Average/Maximum Solution Similarities History", history));
|
---|
| 247 | } else {
|
---|
| 248 | ((DataTableHistory)results["Minimum/Average/Maximum Solution Similarities History"].Value).Add(minAvgMaxSimilaritiesDataTable);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | return base.Apply();
|
---|
| 254 | }
|
---|
| 255 | }
|
---|
| 256 | }
|
---|