1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics.Contracts;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression.Policies;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
33 | using HeuristicLab.Random;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
|
---|
36 | public static class MctsSymbolicRegressionStatic {
|
---|
37 | // TODO: SGD with adagrad instead of lbfgs?
|
---|
38 | // TODO: check Taylor expansion capabilities (ln(x), sqrt(x), exp(x)) in combination with GBT
|
---|
39 | // TODO: optimize for 3 targets concurrently (y, 1/y, exp(y), and log(y))? Would simplify the number of possible expressions again
|
---|
40 | #region static API
|
---|
41 |
|
---|
42 | public interface IState {
|
---|
43 | bool Done { get; }
|
---|
44 | ISymbolicRegressionModel BestModel { get; }
|
---|
45 | double BestSolutionTrainingQuality { get; }
|
---|
46 | double BestSolutionTestQuality { get; }
|
---|
47 | int TotalRollouts { get; }
|
---|
48 | int EffectiveRollouts { get; }
|
---|
49 | int FuncEvaluations { get; }
|
---|
50 | int GradEvaluations { get; } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations
|
---|
51 | // TODO other stats on LM optimizer might be interesting here
|
---|
52 | }
|
---|
53 |
|
---|
54 | // created through factory method
|
---|
55 | private class State : IState {
|
---|
56 | private const int MaxParams = 100;
|
---|
57 |
|
---|
58 | // state variables used by MCTS
|
---|
59 | internal readonly Automaton automaton;
|
---|
60 | internal IRandom random { get; private set; }
|
---|
61 | internal readonly Tree tree;
|
---|
62 | internal readonly Func<byte[], int, double> evalFun;
|
---|
63 | internal readonly IPolicy treePolicy;
|
---|
64 | // MCTS might get stuck. Track statistics on the number of effective rollouts
|
---|
65 | internal int totalRollouts;
|
---|
66 | internal int effectiveRollouts;
|
---|
67 |
|
---|
68 |
|
---|
69 | // state variables used only internally (for eval function)
|
---|
70 | private readonly IRegressionProblemData problemData;
|
---|
71 | private readonly double[][] x;
|
---|
72 | private readonly double[] y;
|
---|
73 | private readonly double[][] testX;
|
---|
74 | private readonly double[] testY;
|
---|
75 | private readonly double[] scalingFactor;
|
---|
76 | private readonly double[] scalingOffset;
|
---|
77 | private readonly int constOptIterations;
|
---|
78 | private readonly double lowerEstimationLimit, upperEstimationLimit;
|
---|
79 |
|
---|
80 | private readonly ExpressionEvaluator evaluator, testEvaluator;
|
---|
81 |
|
---|
82 | // values for best solution
|
---|
83 | private double bestRSq;
|
---|
84 | private byte[] bestCode;
|
---|
85 | private int bestNParams;
|
---|
86 | private double[] bestConsts;
|
---|
87 |
|
---|
88 | // stats
|
---|
89 | private int funcEvaluations;
|
---|
90 | private int gradEvaluations;
|
---|
91 |
|
---|
92 | // buffers
|
---|
93 | private readonly double[] ones; // vector of ones (as default params)
|
---|
94 | private readonly double[] constsBuf;
|
---|
95 | private readonly double[] predBuf, testPredBuf;
|
---|
96 | private readonly double[][] gradBuf;
|
---|
97 |
|
---|
98 | public State(IRegressionProblemData problemData, uint randSeed, int maxVariables, bool scaleVariables, int constOptIterations,
|
---|
99 | IPolicy treePolicy = null,
|
---|
100 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
101 | bool allowProdOfVars = true,
|
---|
102 | bool allowExp = true,
|
---|
103 | bool allowLog = true,
|
---|
104 | bool allowInv = true,
|
---|
105 | bool allowMultipleTerms = false) {
|
---|
106 |
|
---|
107 | this.problemData = problemData;
|
---|
108 | this.constOptIterations = constOptIterations;
|
---|
109 | this.evalFun = this.Eval;
|
---|
110 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
111 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
112 |
|
---|
113 | random = new MersenneTwister(randSeed);
|
---|
114 |
|
---|
115 | // prepare data for evaluation
|
---|
116 | double[][] x;
|
---|
117 | double[] y;
|
---|
118 | double[][] testX;
|
---|
119 | double[] testY;
|
---|
120 | double[] scalingFactor;
|
---|
121 | double[] scalingOffset;
|
---|
122 | // get training and test datasets (scale linearly based on training set if required)
|
---|
123 | GenerateData(problemData, scaleVariables, problemData.TrainingIndices, out x, out y, out scalingFactor, out scalingOffset);
|
---|
124 | GenerateData(problemData, problemData.TestIndices, scalingFactor, scalingOffset, out testX, out testY);
|
---|
125 | this.x = x;
|
---|
126 | this.y = y;
|
---|
127 | this.testX = testX;
|
---|
128 | this.testY = testY;
|
---|
129 | this.scalingFactor = scalingFactor;
|
---|
130 | this.scalingOffset = scalingOffset;
|
---|
131 | this.evaluator = new ExpressionEvaluator(y.Length, lowerEstimationLimit, upperEstimationLimit);
|
---|
132 | // we need a separate evaluator because the vector length for the test dataset might differ
|
---|
133 | this.testEvaluator = new ExpressionEvaluator(testY.Length, lowerEstimationLimit, upperEstimationLimit);
|
---|
134 |
|
---|
135 | this.automaton = new Automaton(x, maxVariables, allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms);
|
---|
136 | this.treePolicy = treePolicy ?? new Ucb();
|
---|
137 | this.tree = new Tree() { state = automaton.CurrentState, actionStatistics = treePolicy.CreateActionStatistics() };
|
---|
138 |
|
---|
139 | // reset best solution
|
---|
140 | this.bestRSq = 0;
|
---|
141 | // code for default solution (constant model)
|
---|
142 | this.bestCode = new byte[] { (byte)OpCodes.LoadConst0, (byte)OpCodes.Exit };
|
---|
143 | this.bestNParams = 0;
|
---|
144 | this.bestConsts = null;
|
---|
145 |
|
---|
146 | // init buffers
|
---|
147 | this.ones = Enumerable.Repeat(1.0, MaxParams).ToArray();
|
---|
148 | constsBuf = new double[MaxParams];
|
---|
149 | this.predBuf = new double[y.Length];
|
---|
150 | this.testPredBuf = new double[testY.Length];
|
---|
151 |
|
---|
152 | this.gradBuf = Enumerable.Range(0, MaxParams).Select(_ => new double[y.Length]).ToArray();
|
---|
153 | }
|
---|
154 |
|
---|
155 | #region IState inferface
|
---|
156 | public bool Done { get { return tree != null && tree.Done; } }
|
---|
157 |
|
---|
158 | public double BestSolutionTrainingQuality {
|
---|
159 | get {
|
---|
160 | evaluator.Exec(bestCode, x, bestConsts, predBuf);
|
---|
161 | return RSq(y, predBuf);
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | public double BestSolutionTestQuality {
|
---|
166 | get {
|
---|
167 | testEvaluator.Exec(bestCode, testX, bestConsts, testPredBuf);
|
---|
168 | return RSq(testY, testPredBuf);
|
---|
169 | }
|
---|
170 | }
|
---|
171 |
|
---|
172 | // takes the code of the best solution and creates and equivalent symbolic regression model
|
---|
173 | public ISymbolicRegressionModel BestModel {
|
---|
174 | get {
|
---|
175 | var treeGen = new SymbolicExpressionTreeGenerator(problemData.AllowedInputVariables.ToArray());
|
---|
176 | var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
177 |
|
---|
178 | var t = new SymbolicExpressionTree(treeGen.Exec(bestCode, bestConsts, bestNParams, scalingFactor, scalingOffset));
|
---|
179 | var model = new SymbolicRegressionModel(t, interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
180 |
|
---|
181 | // model has already been scaled linearly in Eval
|
---|
182 | return model;
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 | public int TotalRollouts { get { return totalRollouts; } }
|
---|
187 | public int EffectiveRollouts { get { return effectiveRollouts; } }
|
---|
188 | public int FuncEvaluations { get { return funcEvaluations; } }
|
---|
189 | public int GradEvaluations { get { return gradEvaluations; } } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations
|
---|
190 |
|
---|
191 | #endregion
|
---|
192 |
|
---|
193 | private double Eval(byte[] code, int nParams) {
|
---|
194 | double[] optConsts;
|
---|
195 | double q;
|
---|
196 | Eval(code, nParams, out q, out optConsts);
|
---|
197 |
|
---|
198 | if (q > bestRSq) {
|
---|
199 | bestRSq = q;
|
---|
200 | bestNParams = nParams;
|
---|
201 | this.bestCode = new byte[code.Length];
|
---|
202 | this.bestConsts = new double[bestNParams];
|
---|
203 |
|
---|
204 | Array.Copy(code, bestCode, code.Length);
|
---|
205 | Array.Copy(optConsts, bestConsts, bestNParams);
|
---|
206 | }
|
---|
207 |
|
---|
208 | return q;
|
---|
209 | }
|
---|
210 |
|
---|
211 | private void Eval(byte[] code, int nParams, out double rsq, out double[] optConsts) {
|
---|
212 | // we make a first pass to determine a valid starting configuration for all constants
|
---|
213 | // constant c in log(c + f(x)) is adjusted to guarantee that x is positive (see expression evaluator)
|
---|
214 | // scale and offset are set to optimal starting configuration
|
---|
215 | // assumes scale is the first param and offset is the last param
|
---|
216 | double alpha;
|
---|
217 | double beta;
|
---|
218 |
|
---|
219 | // reset constants
|
---|
220 | Array.Copy(ones, constsBuf, nParams);
|
---|
221 | evaluator.Exec(code, x, constsBuf, predBuf, adjustOffsetForLogAndExp: true);
|
---|
222 | funcEvaluations++;
|
---|
223 |
|
---|
224 | // calc opt scaling (alpha*f(x) + beta)
|
---|
225 | OnlineCalculatorError error;
|
---|
226 | OnlineLinearScalingParameterCalculator.Calculate(predBuf, y, out alpha, out beta, out error);
|
---|
227 | if (error == OnlineCalculatorError.None) {
|
---|
228 | constsBuf[0] *= beta;
|
---|
229 | constsBuf[nParams - 1] = constsBuf[nParams - 1] * beta + alpha;
|
---|
230 | }
|
---|
231 | if (nParams <= 2 || constOptIterations <= 0) {
|
---|
232 | // if we don't need to optimize parameters then we are done
|
---|
233 | // changing scale and offset does not influence r²
|
---|
234 | rsq = RSq(y, predBuf);
|
---|
235 | optConsts = constsBuf;
|
---|
236 | } else {
|
---|
237 | // optimize constants using the starting point calculated above
|
---|
238 | OptimizeConstsLm(code, constsBuf, nParams, 0.0, nIters: constOptIterations);
|
---|
239 |
|
---|
240 | evaluator.Exec(code, x, constsBuf, predBuf);
|
---|
241 | funcEvaluations++;
|
---|
242 |
|
---|
243 | rsq = RSq(y, predBuf);
|
---|
244 | optConsts = constsBuf;
|
---|
245 | }
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 |
|
---|
250 | #region helpers
|
---|
251 | private static double RSq(IEnumerable<double> x, IEnumerable<double> y) {
|
---|
252 | OnlineCalculatorError error;
|
---|
253 | double r = OnlinePearsonsRCalculator.Calculate(x, y, out error);
|
---|
254 | return error == OnlineCalculatorError.None ? r * r : 0.0;
|
---|
255 | }
|
---|
256 |
|
---|
257 |
|
---|
258 | private void OptimizeConstsLm(byte[] code, double[] consts, int nParams, double epsF = 0.0, int nIters = 100) {
|
---|
259 | double[] optConsts = new double[nParams]; // allocate a smaller buffer for constants opt (TODO perf?)
|
---|
260 | Array.Copy(consts, optConsts, nParams);
|
---|
261 |
|
---|
262 | alglib.minlmstate state;
|
---|
263 | alglib.minlmreport rep = null;
|
---|
264 | alglib.minlmcreatevj(y.Length, optConsts, out state);
|
---|
265 | alglib.minlmsetcond(state, 0.0, epsF, 0.0, nIters);
|
---|
266 | //alglib.minlmsetgradientcheck(state, 0.000001);
|
---|
267 | alglib.minlmoptimize(state, Func, FuncAndJacobian, null, code);
|
---|
268 | alglib.minlmresults(state, out optConsts, out rep);
|
---|
269 | funcEvaluations += rep.nfunc;
|
---|
270 | gradEvaluations += rep.njac * nParams;
|
---|
271 |
|
---|
272 | if (rep.terminationtype < 0) throw new ArgumentException("lm failed: termination type = " + rep.terminationtype);
|
---|
273 |
|
---|
274 | // only use optimized constants if successful
|
---|
275 | if (rep.terminationtype >= 0) {
|
---|
276 | Array.Copy(optConsts, consts, optConsts.Length);
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | private void Func(double[] arg, double[] fi, object obj) {
|
---|
281 | var code = (byte[])obj;
|
---|
282 | evaluator.Exec(code, x, arg, predBuf); // gradients are nParams x vLen
|
---|
283 | for (int r = 0; r < predBuf.Length; r++) {
|
---|
284 | var res = predBuf[r] - y[r];
|
---|
285 | fi[r] = res;
|
---|
286 | }
|
---|
287 | }
|
---|
288 | private void FuncAndJacobian(double[] arg, double[] fi, double[,] jac, object obj) {
|
---|
289 | int nParams = arg.Length;
|
---|
290 | var code = (byte[])obj;
|
---|
291 | evaluator.ExecGradient(code, x, arg, predBuf, gradBuf); // gradients are nParams x vLen
|
---|
292 | for (int r = 0; r < predBuf.Length; r++) {
|
---|
293 | var res = predBuf[r] - y[r];
|
---|
294 | fi[r] = res;
|
---|
295 |
|
---|
296 | for (int k = 0; k < nParams; k++) {
|
---|
297 | jac[r, k] = gradBuf[k][r];
|
---|
298 | }
|
---|
299 | }
|
---|
300 | }
|
---|
301 | #endregion
|
---|
302 | }
|
---|
303 |
|
---|
304 | public static IState CreateState(IRegressionProblemData problemData, uint randSeed, int maxVariables = 3,
|
---|
305 | bool scaleVariables = true, int constOptIterations = 0,
|
---|
306 | IPolicy policy = null,
|
---|
307 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
|
---|
308 | bool allowProdOfVars = true,
|
---|
309 | bool allowExp = true,
|
---|
310 | bool allowLog = true,
|
---|
311 | bool allowInv = true,
|
---|
312 | bool allowMultipleTerms = false
|
---|
313 | ) {
|
---|
314 | return new State(problemData, randSeed, maxVariables, scaleVariables, constOptIterations,
|
---|
315 | policy,
|
---|
316 | lowerEstimationLimit, upperEstimationLimit,
|
---|
317 | allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms);
|
---|
318 | }
|
---|
319 |
|
---|
320 | // returns the quality of the evaluated solution
|
---|
321 | public static double MakeStep(IState state) {
|
---|
322 | var mctsState = state as State;
|
---|
323 | if (mctsState == null) throw new ArgumentException("state");
|
---|
324 | if (mctsState.Done) throw new NotSupportedException("The tree search has enumerated all possible solutions.");
|
---|
325 |
|
---|
326 | return TreeSearch(mctsState);
|
---|
327 | }
|
---|
328 | #endregion
|
---|
329 |
|
---|
330 | private static double TreeSearch(State mctsState) {
|
---|
331 | var automaton = mctsState.automaton;
|
---|
332 | var tree = mctsState.tree;
|
---|
333 | var eval = mctsState.evalFun;
|
---|
334 | var rand = mctsState.random;
|
---|
335 | var treePolicy = mctsState.treePolicy;
|
---|
336 | double q = 0;
|
---|
337 | bool success = false;
|
---|
338 | do {
|
---|
339 | automaton.Reset();
|
---|
340 | success = TryTreeSearchRec(rand, tree, automaton, eval, treePolicy, out q);
|
---|
341 | mctsState.totalRollouts++;
|
---|
342 | } while (!success && !tree.Done);
|
---|
343 | mctsState.effectiveRollouts++;
|
---|
344 | return q;
|
---|
345 | }
|
---|
346 |
|
---|
347 | // tree search might fail because of constraints for expressions
|
---|
348 | // in this case we get stuck we just restart
|
---|
349 | // see ConstraintHandler.cs for more info
|
---|
350 | private static bool TryTreeSearchRec(IRandom rand, Tree tree, Automaton automaton, Func<byte[], int, double> eval, IPolicy treePolicy,
|
---|
351 | out double q) {
|
---|
352 | Tree selectedChild = null;
|
---|
353 | Contract.Assert(tree.state == automaton.CurrentState);
|
---|
354 | Contract.Assert(!tree.Done);
|
---|
355 | if (tree.children == null) {
|
---|
356 | if (automaton.IsFinalState(tree.state)) {
|
---|
357 | // final state
|
---|
358 | tree.Done = true;
|
---|
359 |
|
---|
360 | // EVALUATE
|
---|
361 | byte[] code; int nParams;
|
---|
362 | automaton.GetCode(out code, out nParams);
|
---|
363 | q = eval(code, nParams);
|
---|
364 |
|
---|
365 | treePolicy.Update(tree.actionStatistics, q);
|
---|
366 | return true; // we reached a final state
|
---|
367 | } else {
|
---|
368 | // EXPAND
|
---|
369 | int[] possibleFollowStates;
|
---|
370 | int nFs;
|
---|
371 | automaton.FollowStates(automaton.CurrentState, out possibleFollowStates, out nFs);
|
---|
372 | if (nFs == 0) {
|
---|
373 | // stuck in a dead end (no final state and no allowed follow states)
|
---|
374 | q = 0;
|
---|
375 | tree.Done = true;
|
---|
376 | tree.children = null;
|
---|
377 | return false;
|
---|
378 | }
|
---|
379 | tree.children = new Tree[nFs];
|
---|
380 | for (int i = 0; i < tree.children.Length; i++)
|
---|
381 | tree.children[i] = new Tree() { children = null, state = possibleFollowStates[i], actionStatistics = treePolicy.CreateActionStatistics() };
|
---|
382 |
|
---|
383 | selectedChild = nFs > 1 ? SelectFinalOrRandom(automaton, tree, rand) : tree.children[0];
|
---|
384 | }
|
---|
385 | } else {
|
---|
386 | // tree.children != null
|
---|
387 | // UCT selection within tree
|
---|
388 | int selectedIdx = 0;
|
---|
389 | if (tree.children.Length > 1) {
|
---|
390 | selectedIdx = treePolicy.Select(tree.children.Select(ch => ch.actionStatistics), rand);
|
---|
391 | }
|
---|
392 | selectedChild = tree.children[selectedIdx];
|
---|
393 | }
|
---|
394 | // make selected step and recurse
|
---|
395 | automaton.Goto(selectedChild.state);
|
---|
396 | var success = TryTreeSearchRec(rand, selectedChild, automaton, eval, treePolicy, out q);
|
---|
397 | if (success) {
|
---|
398 | // only update if successful
|
---|
399 | treePolicy.Update(tree.actionStatistics, q);
|
---|
400 | }
|
---|
401 |
|
---|
402 | tree.Done = tree.children.All(ch => ch.Done);
|
---|
403 | if (tree.Done) {
|
---|
404 | tree.children = null; // cut off the sub-branch if it has been fully explored
|
---|
405 | }
|
---|
406 | return success;
|
---|
407 | }
|
---|
408 |
|
---|
409 | private static Tree SelectFinalOrRandom(Automaton automaton, Tree tree, IRandom rand) {
|
---|
410 | // if one of the new children leads to a final state then go there
|
---|
411 | // otherwise choose a random child
|
---|
412 | int selectedChildIdx = -1;
|
---|
413 | // find first final state if there is one
|
---|
414 | for (int i = 0; i < tree.children.Length; i++) {
|
---|
415 | if (automaton.IsFinalState(tree.children[i].state)) {
|
---|
416 | selectedChildIdx = i;
|
---|
417 | break;
|
---|
418 | }
|
---|
419 | }
|
---|
420 | // no final state -> select a the first child
|
---|
421 | if (selectedChildIdx == -1) {
|
---|
422 | selectedChildIdx = 0;
|
---|
423 | }
|
---|
424 | return tree.children[selectedChildIdx];
|
---|
425 | }
|
---|
426 |
|
---|
427 | // scales data and extracts values from dataset into arrays
|
---|
428 | private static void GenerateData(IRegressionProblemData problemData, bool scaleVariables, IEnumerable<int> rows,
|
---|
429 | out double[][] xs, out double[] y, out double[] scalingFactor, out double[] scalingOffset) {
|
---|
430 | xs = new double[problemData.AllowedInputVariables.Count()][];
|
---|
431 |
|
---|
432 | var i = 0;
|
---|
433 | if (scaleVariables) {
|
---|
434 | scalingFactor = new double[xs.Length];
|
---|
435 | scalingOffset = new double[xs.Length];
|
---|
436 | } else {
|
---|
437 | scalingFactor = null;
|
---|
438 | scalingOffset = null;
|
---|
439 | }
|
---|
440 | foreach (var var in problemData.AllowedInputVariables) {
|
---|
441 | if (scaleVariables) {
|
---|
442 | var minX = problemData.Dataset.GetDoubleValues(var, rows).Min();
|
---|
443 | var maxX = problemData.Dataset.GetDoubleValues(var, rows).Max();
|
---|
444 | var range = maxX - minX;
|
---|
445 |
|
---|
446 | // scaledX = (x - min) / range
|
---|
447 | var sf = 1.0 / range;
|
---|
448 | var offset = -minX / range;
|
---|
449 | scalingFactor[i] = sf;
|
---|
450 | scalingOffset[i] = offset;
|
---|
451 | i++;
|
---|
452 | }
|
---|
453 | }
|
---|
454 |
|
---|
455 | GenerateData(problemData, rows, scalingFactor, scalingOffset, out xs, out y);
|
---|
456 | }
|
---|
457 |
|
---|
458 | // extract values from dataset into arrays
|
---|
459 | private static void GenerateData(IRegressionProblemData problemData, IEnumerable<int> rows, double[] scalingFactor, double[] scalingOffset,
|
---|
460 | out double[][] xs, out double[] y) {
|
---|
461 | xs = new double[problemData.AllowedInputVariables.Count()][];
|
---|
462 |
|
---|
463 | int i = 0;
|
---|
464 | foreach (var var in problemData.AllowedInputVariables) {
|
---|
465 | var sf = scalingFactor == null ? 1.0 : scalingFactor[i];
|
---|
466 | var offset = scalingFactor == null ? 0.0 : scalingOffset[i];
|
---|
467 | xs[i++] =
|
---|
468 | problemData.Dataset.GetDoubleValues(var, rows).Select(xi => xi * sf + offset).ToArray();
|
---|
469 | }
|
---|
470 |
|
---|
471 | y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
472 | }
|
---|
473 | }
|
---|
474 | }
|
---|