Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/RelativeErrorLoss.cs @ 12726

Last change on this file since 12726 was 12700, checked in by gkronber, 10 years ago

#2261: copied GBT implementation from branch to trunk

File size: 4.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
24using System.Collections.Generic;
25using System.Diagnostics;
26using System.Linq;
27using HeuristicLab.Common;
28
29namespace HeuristicLab.Algorithms.DataAnalysis {
30  // relative error loss is a special case of weighted absolute error loss with weights = (1/target)
31  public class RelativeErrorLoss : ILossFunction {
32    public double GetLoss(IEnumerable<double> target, IEnumerable<double> pred) {
33      var targetEnum = target.GetEnumerator();
34      var predEnum = pred.GetEnumerator();
35
36      double s = 0;
37      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
38        double res = targetEnum.Current - predEnum.Current;
39        s += Math.Abs(res) * Math.Abs(1.0 / targetEnum.Current);
40      }
41      if (targetEnum.MoveNext() | predEnum.MoveNext())
42        throw new ArgumentException("target and pred have different lengths");
43
44      return s;
45    }
46
47    public IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred) {
48      var targetEnum = target.GetEnumerator();
49      var predEnum = pred.GetEnumerator();
50
51      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
52        // sign(res) * abs(1 / target)
53        var res = targetEnum.Current - predEnum.Current;
54        if (res > 0) yield return 1.0 / Math.Abs(targetEnum.Current);
55        else if (res < 0) yield return -1.0 / Math.Abs(targetEnum.Current);
56        else yield return 0.0;
57      }
58      if (targetEnum.MoveNext() | predEnum.MoveNext())
59        throw new ArgumentException("target and pred have different lengths");
60    }
61
62    // targetArr and predArr are not changed by LineSearch
63    public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
64      if (targetArr.Length != predArr.Length)
65        throw new ArgumentException("target and pred have different lengths");
66
67      // line search for relative error
68      // weighted median (weight = 1/target)
69      int nRows = endIdx - startIdx + 1; // startIdx and endIdx are inclusive
70      if (nRows == 1) return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; // res
71      else if (nRows == 2) {
72        // weighted average of two residuals
73        var w0 = Math.Abs(1.0 / targetArr[idx[startIdx]]);
74        var w1 = Math.Abs(1.0 / targetArr[idx[endIdx]]);
75        if (w0 > w1) {
76          return targetArr[idx[startIdx]] - predArr[idx[startIdx]];
77        } else if (w0 < w1) {
78          return targetArr[idx[endIdx]] - predArr[idx[endIdx]];
79        } else {
80          // same weight -> return average of both residuals
81          return ((targetArr[idx[startIdx]] - predArr[idx[startIdx]]) + (targetArr[idx[endIdx]] - predArr[idx[endIdx]])) / 2;
82        }
83      } else {
84        // create an array of key-value pairs to be sorted (instead of using Array.Sort(res, weights))
85        var res_w = new KeyValuePair<double, double>[nRows];
86        var totalWeight = 0.0;
87        for (int i = startIdx; i <= endIdx; i++) {
88          int row = idx[i];
89          var res = targetArr[row] - predArr[row];
90          var w = Math.Abs(1.0 / targetArr[row]);
91          res_w[i - startIdx] = new KeyValuePair<double, double>(res, w);
92          totalWeight += w;
93        }
94        // TODO: improve efficiency (find median without sort)
95        res_w.StableSort((a, b) => Math.Sign(a.Key - b.Key));
96
97        int k = 0;
98        double sum = totalWeight - res_w[k].Value; // total - first weight
99        while (sum > totalWeight / 2) {
100          k++;
101          sum -= res_w[k].Value;
102        }
103        return res_w[k].Key;
104      }
105    }
106
107    public override string ToString() {
108      return "Relative error loss";
109    }
110  }
111}
Note: See TracBrowser for help on using the repository browser.