Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/LogisticRegressionLoss.cs @ 12726

Last change on this file since 12726 was 12700, checked in by gkronber, 10 years ago

#2261: copied GBT implementation from branch to trunk

File size: 3.5 KB
RevLine 
[12590]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
[12589]24using System.Collections.Generic;
25using System.Diagnostics;
26using System.Linq;
27using HeuristicLab.Common;
28
[12590]29namespace HeuristicLab.Algorithms.DataAnalysis {
[12607]30  // Greedy Function Approximation: A Gradient Boosting Machine (page 9)
[12589]31  public class LogisticRegressionLoss : ILossFunction {
[12696]32    public double GetLoss(IEnumerable<double> target, IEnumerable<double> pred) {
[12589]33      var targetEnum = target.GetEnumerator();
34      var predEnum = pred.GetEnumerator();
35
36      double s = 0;
[12696]37      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
[12607]38        Debug.Assert(targetEnum.Current.IsAlmost(0.0) || targetEnum.Current.IsAlmost(1.0), "labels must be 0 or 1 for logistic regression loss");
39
40        var y = targetEnum.Current * 2 - 1; // y in {-1,1}
[12696]41        s += Math.Log(1 + Math.Exp(-2 * y * predEnum.Current));
[12589]42      }
[12696]43      if (targetEnum.MoveNext() | predEnum.MoveNext())
44        throw new ArgumentException("target and pred have different lengths");
[12589]45
46      return s;
47    }
48
[12696]49    public IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred) {
[12589]50      var targetEnum = target.GetEnumerator();
51      var predEnum = pred.GetEnumerator();
52
[12696]53      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
[12607]54        Debug.Assert(targetEnum.Current.IsAlmost(0.0) || targetEnum.Current.IsAlmost(1.0), "labels must be 0 or 1 for logistic regression loss");
55        var y = targetEnum.Current * 2 - 1; // y in {-1,1}
56
[12696]57        yield return 2 * y / (1 + Math.Exp(2 * y * predEnum.Current));
[12607]58
[12589]59      }
[12696]60      if (targetEnum.MoveNext() | predEnum.MoveNext())
61        throw new ArgumentException("target and pred have different lengths");
[12589]62    }
63
[12697]64    // targetArr and predArr are not changed by LineSearch
65    public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
[12696]66      if (targetArr.Length != predArr.Length)
67        throw new ArgumentException("target and pred have different lengths");
[12589]68
[12607]69      // "Simple Newton-Raphson step" of eqn. 23
[12697]70      double sumY = 0.0;
71      double sumDiff = 0.0;
72      for (int i = startIdx; i <= endIdx; i++) {
73        var row = idx[i];
74        var y = targetArr[row] * 2 - 1; // y in {-1,1}
75        var pseudoResponse = 2 * y / (1 + Math.Exp(2 * y * predArr[row]));
[12589]76
[12697]77        sumY += pseudoResponse;
78        sumDiff += Math.Abs(pseudoResponse) * (2 - Math.Abs(pseudoResponse));
79      }
80      // prevent divByZero
81      sumDiff = Math.Max(1E-12, sumDiff);
82      return sumY / sumDiff;
[12589]83    }
84
85    public override string ToString() {
86      return "Logistic regression loss";
87    }
88  }
89}
Note: See TracBrowser for help on using the repository browser.