[8323] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8473] | 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
[8323] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 28 |
|
---|
[8371] | 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8323] | 30 | /// <summary>
|
---|
| 31 | /// Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.
|
---|
| 32 | /// </summary>
|
---|
| 33 | [Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution {
|
---|
| 36 |
|
---|
| 37 | public new IGaussianProcessModel Model {
|
---|
| 38 | get { return (IGaussianProcessModel)base.Model; }
|
---|
| 39 | set { base.Model = value; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | [StorableConstructor]
|
---|
| 43 | private GaussianProcessRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
| 44 | private GaussianProcessRegressionSolution(GaussianProcessRegressionSolution original, Cloner cloner)
|
---|
| 45 | : base(original, cloner) {
|
---|
| 46 | }
|
---|
| 47 | public GaussianProcessRegressionSolution(IGaussianProcessModel model, IRegressionProblemData problemData)
|
---|
| 48 | : base(model, problemData) {
|
---|
| 49 | RecalculateResults();
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 53 | return new GaussianProcessRegressionSolution(this, cloner);
|
---|
| 54 | }
|
---|
[8473] | 55 |
|
---|
| 56 | public IEnumerable<double> EstimatedVariance {
|
---|
| 57 | get { return GetEstimatedVariance(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 58 | }
|
---|
| 59 | public IEnumerable<double> EstimatedTrainingVariance {
|
---|
| 60 | get { return GetEstimatedVariance(ProblemData.TrainingIndices); }
|
---|
| 61 | }
|
---|
| 62 | public IEnumerable<double> EstimatedTestVariance {
|
---|
| 63 | get { return GetEstimatedVariance(ProblemData.TestIndices); }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | public IEnumerable<double> GetEstimatedVariance(IEnumerable<int> rows) {
|
---|
| 67 | return Model.GetEstimatedVariance(ProblemData.Dataset, rows);
|
---|
| 68 | }
|
---|
[8323] | 69 | }
|
---|
| 70 | }
|
---|