1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.
|
---|
32 | /// </summary>
|
---|
33 | [Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")]
|
---|
34 | [StorableClass]
|
---|
35 | public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution {
|
---|
36 |
|
---|
37 | public new IGaussianProcessModel Model {
|
---|
38 | get { return (IGaussianProcessModel)base.Model; }
|
---|
39 | set { base.Model = value; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private GaussianProcessRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
44 | private GaussianProcessRegressionSolution(GaussianProcessRegressionSolution original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | }
|
---|
47 | public GaussianProcessRegressionSolution(IGaussianProcessModel model, IRegressionProblemData problemData)
|
---|
48 | : base(model, problemData) {
|
---|
49 | RecalculateResults();
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
53 | return new GaussianProcessRegressionSolution(this, cloner);
|
---|
54 | }
|
---|
55 |
|
---|
56 | public IEnumerable<double> EstimatedVariance {
|
---|
57 | get { return GetEstimatedVariance(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
58 | }
|
---|
59 | public IEnumerable<double> EstimatedTrainingVariance {
|
---|
60 | get { return GetEstimatedVariance(ProblemData.TrainingIndices); }
|
---|
61 | }
|
---|
62 | public IEnumerable<double> EstimatedTestVariance {
|
---|
63 | get { return GetEstimatedVariance(ProblemData.TestIndices); }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IEnumerable<double> GetEstimatedVariance(IEnumerable<int> rows) {
|
---|
67 | return Model.GetEstimatedVariance(ProblemData.Dataset, rows);
|
---|
68 | }
|
---|
69 | }
|
---|
70 | }
|
---|