1 | \documentclass[12pt, a4paper]{article} |
---|
2 | |
---|
3 | %include packages |
---|
4 | \usepackage{a4} |
---|
5 | \usepackage[dvips]{graphicx} |
---|
6 | \usepackage[ansinew]{inputenc} |
---|
7 | \usepackage{epsfig} |
---|
8 | \usepackage{subcaption} |
---|
9 | \usepackage{amsmath} |
---|
10 | \usepackage{amssymb} |
---|
11 | |
---|
12 | \pagestyle{plain} |
---|
13 | \pagenumbering{arabic} |
---|
14 | |
---|
15 | \title{Real Valued Test Functions} |
---|
16 | \author{Heuristic and Evolutionary Algorithms Laboratory (HEAL)} |
---|
17 | \date{\today} |
---|
18 | |
---|
19 | \begin{document} |
---|
20 | \maketitle |
---|
21 | |
---|
22 | \section*{Ackley Function} |
---|
23 | \begin{equation*} |
---|
24 | f(x) = 20 + e - 20e^{-\frac{1}{5} \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^n \cos(2 \pi x_i)} |
---|
25 | \end{equation*} |
---|
26 | |
---|
27 | \begin{tabbing} |
---|
28 | \hspace{5cm}\=\kill |
---|
29 | \textbf{Dimensions:} \> $n$ \\ |
---|
30 | \textbf{Domain:} \> $-32.768 \leq x_i \leq 32.768$ \\ |
---|
31 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
32 | \textbf{Operator:} \> AckleyEvaluator \\ |
---|
33 | \textbf{Charts:} \> \\ |
---|
34 | \end{tabbing} |
---|
35 | |
---|
36 | \begin{figure}[ht] |
---|
37 | \begin{subfigure}{0.49\textwidth} |
---|
38 | \includegraphics[width=\linewidth]{Images/Ackley_large} |
---|
39 | \caption{[-32.768, 32.768]} |
---|
40 | \end{subfigure} |
---|
41 | \begin{subfigure}{0.49\textwidth} |
---|
42 | \includegraphics[width=\linewidth]{Images/Ackley_small} |
---|
43 | \caption{[-6.0, 6.0]} |
---|
44 | \end{subfigure} |
---|
45 | \caption{Ackley function plots.} |
---|
46 | \end{figure} |
---|
47 | |
---|
48 | \newpage |
---|
49 | |
---|
50 | \section*{Beale Function} |
---|
51 | \begin{equation*} |
---|
52 | f(x)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625 - x_1 + x_1x_2^3)^2 |
---|
53 | \end{equation*} |
---|
54 | |
---|
55 | \begin{tabbing} |
---|
56 | \hspace{5cm}\=\kill |
---|
57 | \textbf{Dimensions:} \> $2$ \\ |
---|
58 | \textbf{Domain:} \> $-4.5 \leq x_i \leq 4.5$ \\ |
---|
59 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (3.0, 0.5)$ \\ |
---|
60 | \textbf{Operator:} \> BealeEvaluator \\ |
---|
61 | \textbf{Charts:} \> \\ |
---|
62 | \end{tabbing} |
---|
63 | |
---|
64 | \begin{figure}[ht] |
---|
65 | \includegraphics[width=\textwidth]{Images/Beale} |
---|
66 | \caption{Beale function [-4.5, 4.5].} |
---|
67 | \end{figure} |
---|
68 | |
---|
69 | \newpage |
---|
70 | |
---|
71 | \section*{Booth Function} |
---|
72 | \begin{equation*} |
---|
73 | f(x)=(x_1+2x_2-7)^2+(2x_1+x_2-5)^2 |
---|
74 | \end{equation*} |
---|
75 | |
---|
76 | \begin{tabbing} |
---|
77 | \hspace{5cm}\=\kill |
---|
78 | \textbf{Dimensions:} \> $2$ \\ |
---|
79 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
80 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 3.0)$ \\ |
---|
81 | \textbf{Operator:} \> BoothEvaluator \\ |
---|
82 | \textbf{Charts:} \> \\ |
---|
83 | \end{tabbing} |
---|
84 | |
---|
85 | \begin{figure}[ht] |
---|
86 | \includegraphics[width=\textwidth]{Images/Booth} |
---|
87 | \caption{Booth function [-10.0, 10.0].} |
---|
88 | \end{figure} |
---|
89 | |
---|
90 | \newpage |
---|
91 | |
---|
92 | \section*{Griewank Function} |
---|
93 | \begin{equation*} |
---|
94 | f(x) = 1 + \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt i}) |
---|
95 | \end{equation*} |
---|
96 | |
---|
97 | \begin{tabbing} |
---|
98 | \hspace{5cm}\=\kill |
---|
99 | \textbf{Dimensions:} \> $n$ \\ |
---|
100 | \textbf{Domain:} \> $-600.0 \leq x_i \leq 600.0$ \\ |
---|
101 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
102 | \textbf{Operator:} \> GriewankEvaluator \\ |
---|
103 | \textbf{Charts:} \> \\ |
---|
104 | \end{tabbing} |
---|
105 | |
---|
106 | \begin{figure}[ht] |
---|
107 | \begin{subfigure}{0.49\textwidth} |
---|
108 | \includegraphics[width=\linewidth]{Images/Griewank_large} |
---|
109 | \caption{[-600.0, 600.0]} |
---|
110 | \end{subfigure} |
---|
111 | \begin{subfigure}{0.49\textwidth} |
---|
112 | \includegraphics[width=\linewidth]{Images/Griewank_small} |
---|
113 | \caption{[-10.0, 10.0]} |
---|
114 | \end{subfigure} |
---|
115 | \caption{Griewank function plots.} |
---|
116 | \end{figure} |
---|
117 | |
---|
118 | \newpage |
---|
119 | |
---|
120 | \section*{Levy Function} |
---|
121 | \begin{equation*} |
---|
122 | f(x)=\sin^2(\pi w_1)+\sum\limits_{i=1}^{n-1}(w_i-1)^2[1+10\sin^2(\pi w_i+1)]+(w_n-1)^2[1+\sin^2(2\pi w_n)] |
---|
123 | \end{equation*} |
---|
124 | \begin{equation*} |
---|
125 | w_i=1+\frac{x_i - 1}{4}, i=1,\dots,n |
---|
126 | \end{equation*} |
---|
127 | |
---|
128 | \begin{tabbing} |
---|
129 | \hspace{5cm}\=\kill |
---|
130 | \textbf{Dimensions:} \> $n$ \\ |
---|
131 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
132 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0)$ \\ |
---|
133 | \textbf{Operator:} \> LevyEvaluator \\ |
---|
134 | \textbf{Charts:} \> \\ |
---|
135 | \end{tabbing} |
---|
136 | |
---|
137 | \begin{figure}[ht] |
---|
138 | \includegraphics[width=\textwidth]{Images/Levy} |
---|
139 | \caption{Levy function [-10.0, 10.0].} |
---|
140 | \end{figure} |
---|
141 | |
---|
142 | \newpage |
---|
143 | |
---|
144 | \section*{Matyas Function} |
---|
145 | \begin{equation*} |
---|
146 | f(x)=0.26(x_1^2+x_2^2)-0.48x_1x_2 |
---|
147 | \end{equation*} |
---|
148 | |
---|
149 | \begin{tabbing} |
---|
150 | \hspace{5cm}\=\kill |
---|
151 | \textbf{Dimensions:} \> $2$ \\ |
---|
152 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
153 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0)$ \\ |
---|
154 | \textbf{Operator:} \> MatyasEvaluator \\ |
---|
155 | \textbf{Charts:} \> \\ |
---|
156 | \end{tabbing} |
---|
157 | |
---|
158 | \begin{figure}[ht] |
---|
159 | \includegraphics[width=\textwidth]{Images/Matyas} |
---|
160 | \caption{Matyas function [-10.0, 10.0].} |
---|
161 | \end{figure} |
---|
162 | |
---|
163 | \newpage |
---|
164 | |
---|
165 | \section*{Rastrigin Function} |
---|
166 | \begin{equation*} |
---|
167 | f(x)=10n+\sum\limits_{i=1}^n[x_i^2-10\cos(2\pi x_i)] |
---|
168 | \end{equation*} |
---|
169 | |
---|
170 | \begin{tabbing} |
---|
171 | \hspace{5cm}\=\kill |
---|
172 | \textbf{Dimensions:} \> $n$ \\ |
---|
173 | \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ |
---|
174 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
175 | \textbf{Operator:} \> RastriginEvaluator \\ |
---|
176 | \textbf{Charts:} \> \\ |
---|
177 | \end{tabbing} |
---|
178 | |
---|
179 | \begin{figure}[ht] |
---|
180 | \begin{subfigure}{0.49\textwidth} |
---|
181 | \includegraphics[width=\linewidth]{Images/Rastrigin_large} |
---|
182 | \caption{[-5.12, 5.12]} |
---|
183 | \end{subfigure} |
---|
184 | \begin{subfigure}{0.49\textwidth} |
---|
185 | \includegraphics[width=\linewidth]{Images/Rastrigin_small} |
---|
186 | \caption{[-2.0, 2.0]} |
---|
187 | \end{subfigure} |
---|
188 | \caption{Rastrigin function plots.} |
---|
189 | \end{figure} |
---|
190 | |
---|
191 | \newpage |
---|
192 | |
---|
193 | \section*{Rosenbrock Function} |
---|
194 | \begin{equation*} |
---|
195 | f(x)=\sum\limits_{i=1}^{n-1}[100(x_i^2-x_{i+1})^2+(x_i-1)^2] |
---|
196 | \end{equation*} |
---|
197 | |
---|
198 | \begin{tabbing} |
---|
199 | \hspace{5cm}\=\kill |
---|
200 | \textbf{Dimensions:} \> $n$ \\ |
---|
201 | \textbf{Domain:} \> $-2.048 \leq x_i \leq 2.048$ \\ |
---|
202 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0, \dots, 1.0)$ \\ |
---|
203 | \textbf{Operator:} \> RosenbrockEvaluator \\ |
---|
204 | \textbf{Charts:} \> \\ |
---|
205 | \end{tabbing} |
---|
206 | |
---|
207 | \begin{figure}[ht] |
---|
208 | \includegraphics[width=\textwidth]{Images/Rosenbrock} |
---|
209 | \caption{Rosenbrock function [-2.048, 2.048].} |
---|
210 | \end{figure} |
---|
211 | |
---|
212 | \newpage |
---|
213 | |
---|
214 | \section*{Schwefel Function} |
---|
215 | \begin{equation*} |
---|
216 | f(x)=418.982887272433n - \sum\limits_{i=1}^n x_i\sin(\sqrt{|x_i|}) |
---|
217 | \end{equation*} |
---|
218 | |
---|
219 | \begin{tabbing} |
---|
220 | \hspace{5cm}\=\kill |
---|
221 | \textbf{Dimensions:} \> $n$ \\ |
---|
222 | \textbf{Domain:} \> $-500.0 \leq x_i \leq 500.0$ \\ |
---|
223 | \textbf{Global Optimum:} \> $f(x) \approx 0.0$ at $x = (420.9687, 420.9687, \dots, 420.9687)$ \\ |
---|
224 | \textbf{Operator:} \> SchwefelEvaluator \\ |
---|
225 | \textbf{Charts:} \> \\ |
---|
226 | \end{tabbing} |
---|
227 | |
---|
228 | \begin{figure}[ht] |
---|
229 | \includegraphics[width=\textwidth]{Images/Schwefel} |
---|
230 | \caption{Schwefel function [-500.0, 500.0].} |
---|
231 | \end{figure} |
---|
232 | |
---|
233 | \newpage |
---|
234 | |
---|
235 | \section*{Sphere Function} |
---|
236 | \begin{equation*} |
---|
237 | f(x)=\sum\limits_{i=1}^n x_i^2 |
---|
238 | \end{equation*} |
---|
239 | |
---|
240 | \begin{tabbing} |
---|
241 | \hspace{5cm}\=\kill |
---|
242 | \textbf{Dimensions:} \> $n$ \\ |
---|
243 | \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ |
---|
244 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
245 | \textbf{Operator:} \> SphereEvaluator \\ |
---|
246 | \textbf{Charts:} \> \\ |
---|
247 | \end{tabbing} |
---|
248 | |
---|
249 | \begin{figure}[ht] |
---|
250 | \includegraphics[width=\textwidth]{Images/Sphere} |
---|
251 | \caption{Sphere function [-5.12, 5.12].} |
---|
252 | \end{figure} |
---|
253 | |
---|
254 | \newpage |
---|
255 | |
---|
256 | \section*{Sum Squares Function} |
---|
257 | \begin{equation*} |
---|
258 | f(x)=\sum\limits_{i=1}^n ix_i^2 |
---|
259 | \end{equation*} |
---|
260 | |
---|
261 | \begin{tabbing} |
---|
262 | \hspace{5cm}\=\kill |
---|
263 | \textbf{Dimensions:} \> $n$ \\ |
---|
264 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
265 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
266 | \textbf{Operator:} \> SumSquaresEvaluator \\ |
---|
267 | \textbf{Charts:} \> \\ |
---|
268 | \end{tabbing} |
---|
269 | |
---|
270 | \begin{figure}[ht] |
---|
271 | \includegraphics[width=\textwidth]{Images/SumSquares} |
---|
272 | \caption{Sum squares function [-10.0, 10.0].} |
---|
273 | \end{figure} |
---|
274 | |
---|
275 | \newpage |
---|
276 | |
---|
277 | \section*{Zakharov Function} |
---|
278 | \begin{equation*} |
---|
279 | f(x)=\sum\limits_{i=1}^n x_i^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^4 |
---|
280 | \end{equation*} |
---|
281 | |
---|
282 | \begin{tabbing} |
---|
283 | \hspace{5cm}\=\kill |
---|
284 | \textbf{Dimensions:} \> $n$ \\ |
---|
285 | \textbf{Domain:} \> $-5.0 \leq x_i \leq 10.0$ \\ |
---|
286 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
287 | \textbf{Operator:} \> ZakharovEvaluator \\ |
---|
288 | \textbf{Charts:} \> \\ |
---|
289 | \end{tabbing} |
---|
290 | |
---|
291 | \begin{figure}[ht] |
---|
292 | \includegraphics[width=\textwidth]{Images/Zakharov} |
---|
293 | \caption{Zakharov function [-5.0, 10.0].} |
---|
294 | \end{figure} |
---|
295 | |
---|
296 | \end{document} |
---|