Changeset 9887 for trunk/documentation/Test Functions/TestFunctions.tex
- Timestamp:
- 08/20/13 19:02:23 (9 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/documentation/Test Functions/TestFunctions.tex
r307 r9887 6 6 \usepackage[ansinew]{inputenc} 7 7 \usepackage{epsfig} 8 \usepackage{subcaption} 8 9 \usepackage{amsmath} 9 10 \usepackage{amssymb} … … 21 22 \section*{Ackley Function} 22 23 \begin{equation*} 23 f(x) = 20 + e - 20 \cdote^{-\frac{1}{5} \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^n \cos(2 \pi x_i)}24 f(x) = 20 + e - 20e^{-\frac{1}{5} \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^n \cos(2 \pi x_i)} 24 25 \end{equation*} 25 26 … … 33 34 \end{tabbing} 34 35 35 \begin{center} 36 \includegraphics[width=0.45\textwidth]{Images/Ackley_large} 37 \hfill 38 \includegraphics[width=0.45\textwidth]{Images/Ackley_small} 39 \end{center} 40 41 \newpage 42 43 \section*{Griewangk Function} 44 \begin{equation*} 45 f(x) = 1 + \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n cos(\frac{x_i}{\sqrt i}) 36 \begin{figure}[ht] 37 \begin{subfigure}{0.49\textwidth} 38 \includegraphics[width=\linewidth]{Images/Ackley_large} 39 \caption{[-32.768, 32.768]} 40 \end{subfigure} 41 \begin{subfigure}{0.49\textwidth} 42 \includegraphics[width=\linewidth]{Images/Ackley_small} 43 \caption{[-6.0, 6.0]} 44 \end{subfigure} 45 \caption{Ackley function plots.} 46 \end{figure} 47 48 \newpage 49 50 \section*{Beale Function} 51 \begin{equation*} 52 f(x)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625 - x_1 + x_1x_2^3)^2 53 \end{equation*} 54 55 \begin{tabbing} 56 \hspace{5cm}\=\kill 57 \textbf{Dimensions:} \> $2$ \\ 58 \textbf{Domain:} \> $-4.5 \leq x_i \leq 4.5$ \\ 59 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (3.0, 0.5)$ \\ 60 \textbf{Operator:} \> BealeEvaluator \\ 61 \textbf{Charts:} \> \\ 62 \end{tabbing} 63 64 \begin{figure}[ht] 65 \includegraphics[width=\textwidth]{Images/Beale} 66 \caption{Beale function [-4.5, 4.5].} 67 \end{figure} 68 69 \newpage 70 71 \section*{Booth Function} 72 \begin{equation*} 73 f(x)=(x_1+2x_2-7)^2+(2x_1+x_2-5)^2 74 \end{equation*} 75 76 \begin{tabbing} 77 \hspace{5cm}\=\kill 78 \textbf{Dimensions:} \> $2$ \\ 79 \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ 80 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 3.0)$ \\ 81 \textbf{Operator:} \> BoothEvaluator \\ 82 \textbf{Charts:} \> \\ 83 \end{tabbing} 84 85 \begin{figure}[ht] 86 \includegraphics[width=\textwidth]{Images/Booth} 87 \caption{Booth function [-10.0, 10.0].} 88 \end{figure} 89 90 \newpage 91 92 \section*{Griewank Function} 93 \begin{equation*} 94 f(x) = 1 + \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt i}) 46 95 \end{equation*} 47 96 … … 51 100 \textbf{Domain:} \> $-600.0 \leq x_i \leq 600.0$ \\ 52 101 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ 53 \textbf{Operator:} \> GriewangkEvaluator \\ 54 \textbf{Charts:} \> \\ 55 \end{tabbing} 56 57 \begin{center} 58 \includegraphics[width=0.45\textwidth]{Images/Griewangk_large} 59 \hfill 60 \includegraphics[width=0.45\textwidth]{Images/Griewangk_small} 61 \end{center} 102 \textbf{Operator:} \> GriewankEvaluator \\ 103 \textbf{Charts:} \> \\ 104 \end{tabbing} 105 106 \begin{figure}[ht] 107 \begin{subfigure}{0.49\textwidth} 108 \includegraphics[width=\linewidth]{Images/Griewank_large} 109 \caption{[-600.0, 600.0]} 110 \end{subfigure} 111 \begin{subfigure}{0.49\textwidth} 112 \includegraphics[width=\linewidth]{Images/Griewank_small} 113 \caption{[-10.0, 10.0]} 114 \end{subfigure} 115 \caption{Griewank function plots.} 116 \end{figure} 117 118 \newpage 119 120 \section*{Levy Function} 121 \begin{equation*} 122 f(x)=\sin^2(\pi w_1)+\sum\limits_{i=1}^{n-1}(w_i-1)^2[1+10\sin^2(\pi w_i+1)]+(w_n-1)^2[1+\sin^2(2\pi w_n)] 123 \end{equation*} 124 \begin{equation*} 125 w_i=1+\frac{x_i - 1}{4}, i=1,\dots,n 126 \end{equation*} 127 128 \begin{tabbing} 129 \hspace{5cm}\=\kill 130 \textbf{Dimensions:} \> $n$ \\ 131 \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ 132 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0)$ \\ 133 \textbf{Operator:} \> LevyEvaluator \\ 134 \textbf{Charts:} \> \\ 135 \end{tabbing} 136 137 \begin{figure}[ht] 138 \includegraphics[width=\textwidth]{Images/Levy} 139 \caption{Levy function [-10.0, 10.0].} 140 \end{figure} 141 142 \newpage 143 144 \section*{Matyas Function} 145 \begin{equation*} 146 f(x)=0.26(x_1^2+x_2^2)-0.48x_1x_2 147 \end{equation*} 148 149 \begin{tabbing} 150 \hspace{5cm}\=\kill 151 \textbf{Dimensions:} \> $2$ \\ 152 \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ 153 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0)$ \\ 154 \textbf{Operator:} \> MatyasEvaluator \\ 155 \textbf{Charts:} \> \\ 156 \end{tabbing} 157 158 \begin{figure}[ht] 159 \includegraphics[width=\textwidth]{Images/Matyas} 160 \caption{Matyas function [-10.0, 10.0].} 161 \end{figure} 162 163 \newpage 164 165 \section*{Rastrigin Function} 166 \begin{equation*} 167 f(x)=10n+\sum\limits_{i=1}^n[x_i^2-10\cos(2\pi x_i)] 168 \end{equation*} 169 170 \begin{tabbing} 171 \hspace{5cm}\=\kill 172 \textbf{Dimensions:} \> $n$ \\ 173 \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ 174 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ 175 \textbf{Operator:} \> RastriginEvaluator \\ 176 \textbf{Charts:} \> \\ 177 \end{tabbing} 178 179 \begin{figure}[ht] 180 \begin{subfigure}{0.49\textwidth} 181 \includegraphics[width=\linewidth]{Images/Rastrigin_large} 182 \caption{[-5.12, 5.12]} 183 \end{subfigure} 184 \begin{subfigure}{0.49\textwidth} 185 \includegraphics[width=\linewidth]{Images/Rastrigin_small} 186 \caption{[-2.0, 2.0]} 187 \end{subfigure} 188 \caption{Rastrigin function plots.} 189 \end{figure} 190 191 \newpage 192 193 \section*{Rosenbrock Function} 194 \begin{equation*} 195 f(x)=\sum\limits_{i=1}^{n-1}[100(x_i^2-x_{i+1})^2+(x_i-1)^2] 196 \end{equation*} 197 198 \begin{tabbing} 199 \hspace{5cm}\=\kill 200 \textbf{Dimensions:} \> $n$ \\ 201 \textbf{Domain:} \> $-2.048 \leq x_i \leq 2.048$ \\ 202 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0, \dots, 1.0)$ \\ 203 \textbf{Operator:} \> RosenbrockEvaluator \\ 204 \textbf{Charts:} \> \\ 205 \end{tabbing} 206 207 \begin{figure}[ht] 208 \includegraphics[width=\textwidth]{Images/Rosenbrock} 209 \caption{Rosenbrock function [-2.048, 2.048].} 210 \end{figure} 211 212 \newpage 213 214 \section*{Schwefel Function} 215 \begin{equation*} 216 f(x)=418.982887272433n - \sum\limits_{i=1}^n x_i\sin(\sqrt{|x_i|}) 217 \end{equation*} 218 219 \begin{tabbing} 220 \hspace{5cm}\=\kill 221 \textbf{Dimensions:} \> $n$ \\ 222 \textbf{Domain:} \> $-500.0 \leq x_i \leq 500.0$ \\ 223 \textbf{Global Optimum:} \> $f(x) \approx 0.0$ at $x = (420.9687, 420.9687, \dots, 420.9687)$ \\ 224 \textbf{Operator:} \> SchwefelEvaluator \\ 225 \textbf{Charts:} \> \\ 226 \end{tabbing} 227 228 \begin{figure}[ht] 229 \includegraphics[width=\textwidth]{Images/Schwefel} 230 \caption{Schwefel function [-500.0, 500.0].} 231 \end{figure} 232 233 \newpage 234 235 \section*{Sphere Function} 236 \begin{equation*} 237 f(x)=\sum\limits_{i=1}^n x_i^2 238 \end{equation*} 239 240 \begin{tabbing} 241 \hspace{5cm}\=\kill 242 \textbf{Dimensions:} \> $n$ \\ 243 \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ 244 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ 245 \textbf{Operator:} \> SphereEvaluator \\ 246 \textbf{Charts:} \> \\ 247 \end{tabbing} 248 249 \begin{figure}[ht] 250 \includegraphics[width=\textwidth]{Images/Sphere} 251 \caption{Sphere function [-5.12, 5.12].} 252 \end{figure} 253 254 \newpage 255 256 \section*{Sum Squares Function} 257 \begin{equation*} 258 f(x)=\sum\limits_{i=1}^n ix_i^2 259 \end{equation*} 260 261 \begin{tabbing} 262 \hspace{5cm}\=\kill 263 \textbf{Dimensions:} \> $n$ \\ 264 \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ 265 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ 266 \textbf{Operator:} \> SumSquaresEvaluator \\ 267 \textbf{Charts:} \> \\ 268 \end{tabbing} 269 270 \begin{figure}[ht] 271 \includegraphics[width=\textwidth]{Images/SumSquares} 272 \caption{Sum squares function [-10.0, 10.0].} 273 \end{figure} 274 275 \newpage 276 277 \section*{Zakharov Function} 278 \begin{equation*} 279 f(x)=\sum\limits_{i=1}^n x_i^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^4 280 \end{equation*} 281 282 \begin{tabbing} 283 \hspace{5cm}\=\kill 284 \textbf{Dimensions:} \> $n$ \\ 285 \textbf{Domain:} \> $-5.0 \leq x_i \leq 10.0$ \\ 286 \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ 287 \textbf{Operator:} \> ZakharovEvaluator \\ 288 \textbf{Charts:} \> \\ 289 \end{tabbing} 290 291 \begin{figure}[ht] 292 \includegraphics[width=\textwidth]{Images/Zakharov} 293 \caption{Zakharov function [-5.0, 10.0].} 294 \end{figure} 62 295 63 296 \end{document}
Note: See TracChangeset
for help on using the changeset viewer.