[9887] | 1 | \documentclass[12pt, a4paper]{article} |
---|
| 2 | |
---|
| 3 | %include packages |
---|
| 4 | \usepackage{a4} |
---|
| 5 | \usepackage[dvips]{graphicx} |
---|
| 6 | \usepackage[ansinew]{inputenc} |
---|
| 7 | \usepackage{epsfig} |
---|
| 8 | \usepackage{subcaption} |
---|
| 9 | \usepackage{amsmath} |
---|
| 10 | \usepackage{amssymb} |
---|
| 11 | |
---|
| 12 | \pagestyle{plain} |
---|
| 13 | \pagenumbering{arabic} |
---|
| 14 | |
---|
| 15 | \title{Real Valued Test Functions} |
---|
| 16 | \author{Heuristic and Evolutionary Algorithms Laboratory (HEAL)} |
---|
| 17 | \date{\today} |
---|
| 18 | |
---|
| 19 | \begin{document} |
---|
| 20 | \maketitle |
---|
| 21 | |
---|
| 22 | \section*{Ackley Function} |
---|
| 23 | \begin{equation*} |
---|
| 24 | f(x) = 20 + e - 20e^{-\frac{1}{5} \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^n \cos(2 \pi x_i)} |
---|
| 25 | \end{equation*} |
---|
| 26 | |
---|
| 27 | \begin{tabbing} |
---|
| 28 | \hspace{5cm}\=\kill |
---|
| 29 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 30 | \textbf{Domain:} \> $-32.768 \leq x_i \leq 32.768$ \\ |
---|
| 31 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 32 | \textbf{Operator:} \> AckleyEvaluator \\ |
---|
| 33 | \textbf{Charts:} \> \\ |
---|
| 34 | \end{tabbing} |
---|
| 35 | |
---|
| 36 | \begin{figure}[ht] |
---|
| 37 | \begin{subfigure}{0.49\textwidth} |
---|
| 38 | \includegraphics[width=\linewidth]{Images/Ackley_large} |
---|
| 39 | \caption{[-32.768, 32.768]} |
---|
| 40 | \end{subfigure} |
---|
| 41 | \begin{subfigure}{0.49\textwidth} |
---|
| 42 | \includegraphics[width=\linewidth]{Images/Ackley_small} |
---|
| 43 | \caption{[-6.0, 6.0]} |
---|
| 44 | \end{subfigure} |
---|
| 45 | \caption{Ackley function plots.} |
---|
| 46 | \end{figure} |
---|
| 47 | |
---|
| 48 | \newpage |
---|
| 49 | |
---|
| 50 | \section*{Beale Function} |
---|
| 51 | \begin{equation*} |
---|
| 52 | f(x)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625 - x_1 + x_1x_2^3)^2 |
---|
| 53 | \end{equation*} |
---|
| 54 | |
---|
| 55 | \begin{tabbing} |
---|
| 56 | \hspace{5cm}\=\kill |
---|
| 57 | \textbf{Dimensions:} \> $2$ \\ |
---|
| 58 | \textbf{Domain:} \> $-4.5 \leq x_i \leq 4.5$ \\ |
---|
| 59 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (3.0, 0.5)$ \\ |
---|
| 60 | \textbf{Operator:} \> BealeEvaluator \\ |
---|
| 61 | \textbf{Charts:} \> \\ |
---|
| 62 | \end{tabbing} |
---|
| 63 | |
---|
| 64 | \begin{figure}[ht] |
---|
| 65 | \includegraphics[width=\textwidth]{Images/Beale} |
---|
| 66 | \caption{Beale function [-4.5, 4.5].} |
---|
| 67 | \end{figure} |
---|
| 68 | |
---|
| 69 | \newpage |
---|
| 70 | |
---|
| 71 | \section*{Booth Function} |
---|
| 72 | \begin{equation*} |
---|
| 73 | f(x)=(x_1+2x_2-7)^2+(2x_1+x_2-5)^2 |
---|
| 74 | \end{equation*} |
---|
| 75 | |
---|
| 76 | \begin{tabbing} |
---|
| 77 | \hspace{5cm}\=\kill |
---|
| 78 | \textbf{Dimensions:} \> $2$ \\ |
---|
| 79 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
| 80 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 3.0)$ \\ |
---|
| 81 | \textbf{Operator:} \> BoothEvaluator \\ |
---|
| 82 | \textbf{Charts:} \> \\ |
---|
| 83 | \end{tabbing} |
---|
| 84 | |
---|
| 85 | \begin{figure}[ht] |
---|
| 86 | \includegraphics[width=\textwidth]{Images/Booth} |
---|
| 87 | \caption{Booth function [-10.0, 10.0].} |
---|
| 88 | \end{figure} |
---|
| 89 | |
---|
| 90 | \newpage |
---|
| 91 | |
---|
| 92 | \section*{Griewank Function} |
---|
| 93 | \begin{equation*} |
---|
| 94 | f(x) = 1 + \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n \cos(\frac{x_i}{\sqrt i}) |
---|
| 95 | \end{equation*} |
---|
| 96 | |
---|
| 97 | \begin{tabbing} |
---|
| 98 | \hspace{5cm}\=\kill |
---|
| 99 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 100 | \textbf{Domain:} \> $-600.0 \leq x_i \leq 600.0$ \\ |
---|
| 101 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 102 | \textbf{Operator:} \> GriewankEvaluator \\ |
---|
| 103 | \textbf{Charts:} \> \\ |
---|
| 104 | \end{tabbing} |
---|
| 105 | |
---|
| 106 | \begin{figure}[ht] |
---|
| 107 | \begin{subfigure}{0.49\textwidth} |
---|
| 108 | \includegraphics[width=\linewidth]{Images/Griewank_large} |
---|
| 109 | \caption{[-600.0, 600.0]} |
---|
| 110 | \end{subfigure} |
---|
| 111 | \begin{subfigure}{0.49\textwidth} |
---|
| 112 | \includegraphics[width=\linewidth]{Images/Griewank_small} |
---|
| 113 | \caption{[-10.0, 10.0]} |
---|
| 114 | \end{subfigure} |
---|
| 115 | \caption{Griewank function plots.} |
---|
| 116 | \end{figure} |
---|
| 117 | |
---|
| 118 | \newpage |
---|
| 119 | |
---|
| 120 | \section*{Levy Function} |
---|
| 121 | \begin{equation*} |
---|
| 122 | f(x)=\sin^2(\pi w_1)+\sum\limits_{i=1}^{n-1}(w_i-1)^2[1+10\sin^2(\pi w_i+1)]+(w_n-1)^2[1+\sin^2(2\pi w_n)] |
---|
| 123 | \end{equation*} |
---|
| 124 | \begin{equation*} |
---|
| 125 | w_i=1+\frac{x_i - 1}{4}, i=1,\dots,n |
---|
| 126 | \end{equation*} |
---|
| 127 | |
---|
| 128 | \begin{tabbing} |
---|
| 129 | \hspace{5cm}\=\kill |
---|
| 130 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 131 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
| 132 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0)$ \\ |
---|
| 133 | \textbf{Operator:} \> LevyEvaluator \\ |
---|
| 134 | \textbf{Charts:} \> \\ |
---|
| 135 | \end{tabbing} |
---|
| 136 | |
---|
| 137 | \begin{figure}[ht] |
---|
| 138 | \includegraphics[width=\textwidth]{Images/Levy} |
---|
| 139 | \caption{Levy function [-10.0, 10.0].} |
---|
| 140 | \end{figure} |
---|
| 141 | |
---|
| 142 | \newpage |
---|
| 143 | |
---|
| 144 | \section*{Matyas Function} |
---|
| 145 | \begin{equation*} |
---|
| 146 | f(x)=0.26(x_1^2+x_2^2)-0.48x_1x_2 |
---|
| 147 | \end{equation*} |
---|
| 148 | |
---|
| 149 | \begin{tabbing} |
---|
| 150 | \hspace{5cm}\=\kill |
---|
| 151 | \textbf{Dimensions:} \> $2$ \\ |
---|
| 152 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
| 153 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0)$ \\ |
---|
| 154 | \textbf{Operator:} \> MatyasEvaluator \\ |
---|
| 155 | \textbf{Charts:} \> \\ |
---|
| 156 | \end{tabbing} |
---|
| 157 | |
---|
| 158 | \begin{figure}[ht] |
---|
| 159 | \includegraphics[width=\textwidth]{Images/Matyas} |
---|
| 160 | \caption{Matyas function [-10.0, 10.0].} |
---|
| 161 | \end{figure} |
---|
| 162 | |
---|
| 163 | \newpage |
---|
| 164 | |
---|
| 165 | \section*{Rastrigin Function} |
---|
| 166 | \begin{equation*} |
---|
| 167 | f(x)=10n+\sum\limits_{i=1}^n[x_i^2-10\cos(2\pi x_i)] |
---|
| 168 | \end{equation*} |
---|
| 169 | |
---|
| 170 | \begin{tabbing} |
---|
| 171 | \hspace{5cm}\=\kill |
---|
| 172 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 173 | \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ |
---|
| 174 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 175 | \textbf{Operator:} \> RastriginEvaluator \\ |
---|
| 176 | \textbf{Charts:} \> \\ |
---|
| 177 | \end{tabbing} |
---|
| 178 | |
---|
| 179 | \begin{figure}[ht] |
---|
| 180 | \begin{subfigure}{0.49\textwidth} |
---|
| 181 | \includegraphics[width=\linewidth]{Images/Rastrigin_large} |
---|
| 182 | \caption{[-5.12, 5.12]} |
---|
| 183 | \end{subfigure} |
---|
| 184 | \begin{subfigure}{0.49\textwidth} |
---|
| 185 | \includegraphics[width=\linewidth]{Images/Rastrigin_small} |
---|
| 186 | \caption{[-2.0, 2.0]} |
---|
| 187 | \end{subfigure} |
---|
| 188 | \caption{Rastrigin function plots.} |
---|
| 189 | \end{figure} |
---|
| 190 | |
---|
| 191 | \newpage |
---|
| 192 | |
---|
| 193 | \section*{Rosenbrock Function} |
---|
| 194 | \begin{equation*} |
---|
| 195 | f(x)=\sum\limits_{i=1}^{n-1}[100(x_i^2-x_{i+1})^2+(x_i-1)^2] |
---|
| 196 | \end{equation*} |
---|
| 197 | |
---|
| 198 | \begin{tabbing} |
---|
| 199 | \hspace{5cm}\=\kill |
---|
| 200 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 201 | \textbf{Domain:} \> $-2.048 \leq x_i \leq 2.048$ \\ |
---|
| 202 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (1.0, 1.0, \dots, 1.0)$ \\ |
---|
| 203 | \textbf{Operator:} \> RosenbrockEvaluator \\ |
---|
| 204 | \textbf{Charts:} \> \\ |
---|
| 205 | \end{tabbing} |
---|
| 206 | |
---|
| 207 | \begin{figure}[ht] |
---|
| 208 | \includegraphics[width=\textwidth]{Images/Rosenbrock} |
---|
| 209 | \caption{Rosenbrock function [-2.048, 2.048].} |
---|
| 210 | \end{figure} |
---|
| 211 | |
---|
| 212 | \newpage |
---|
| 213 | |
---|
| 214 | \section*{Schwefel Function} |
---|
| 215 | \begin{equation*} |
---|
| 216 | f(x)=418.982887272433n - \sum\limits_{i=1}^n x_i\sin(\sqrt{|x_i|}) |
---|
| 217 | \end{equation*} |
---|
| 218 | |
---|
| 219 | \begin{tabbing} |
---|
| 220 | \hspace{5cm}\=\kill |
---|
| 221 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 222 | \textbf{Domain:} \> $-500.0 \leq x_i \leq 500.0$ \\ |
---|
| 223 | \textbf{Global Optimum:} \> $f(x) \approx 0.0$ at $x = (420.9687, 420.9687, \dots, 420.9687)$ \\ |
---|
| 224 | \textbf{Operator:} \> SchwefelEvaluator \\ |
---|
| 225 | \textbf{Charts:} \> \\ |
---|
| 226 | \end{tabbing} |
---|
| 227 | |
---|
| 228 | \begin{figure}[ht] |
---|
| 229 | \includegraphics[width=\textwidth]{Images/Schwefel} |
---|
| 230 | \caption{Schwefel function [-500.0, 500.0].} |
---|
| 231 | \end{figure} |
---|
| 232 | |
---|
| 233 | \newpage |
---|
| 234 | |
---|
| 235 | \section*{Sphere Function} |
---|
| 236 | \begin{equation*} |
---|
| 237 | f(x)=\sum\limits_{i=1}^n x_i^2 |
---|
| 238 | \end{equation*} |
---|
| 239 | |
---|
| 240 | \begin{tabbing} |
---|
| 241 | \hspace{5cm}\=\kill |
---|
| 242 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 243 | \textbf{Domain:} \> $-5.12 \leq x_i \leq 5.12$ \\ |
---|
| 244 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 245 | \textbf{Operator:} \> SphereEvaluator \\ |
---|
| 246 | \textbf{Charts:} \> \\ |
---|
| 247 | \end{tabbing} |
---|
| 248 | |
---|
| 249 | \begin{figure}[ht] |
---|
| 250 | \includegraphics[width=\textwidth]{Images/Sphere} |
---|
| 251 | \caption{Sphere function [-5.12, 5.12].} |
---|
| 252 | \end{figure} |
---|
| 253 | |
---|
| 254 | \newpage |
---|
| 255 | |
---|
| 256 | \section*{Sum Squares Function} |
---|
| 257 | \begin{equation*} |
---|
| 258 | f(x)=\sum\limits_{i=1}^n ix_i^2 |
---|
| 259 | \end{equation*} |
---|
| 260 | |
---|
| 261 | \begin{tabbing} |
---|
| 262 | \hspace{5cm}\=\kill |
---|
| 263 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 264 | \textbf{Domain:} \> $-10.0 \leq x_i \leq 10.0$ \\ |
---|
| 265 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 266 | \textbf{Operator:} \> SumSquaresEvaluator \\ |
---|
| 267 | \textbf{Charts:} \> \\ |
---|
| 268 | \end{tabbing} |
---|
| 269 | |
---|
| 270 | \begin{figure}[ht] |
---|
| 271 | \includegraphics[width=\textwidth]{Images/SumSquares} |
---|
| 272 | \caption{Sum squares function [-10.0, 10.0].} |
---|
| 273 | \end{figure} |
---|
| 274 | |
---|
| 275 | \newpage |
---|
| 276 | |
---|
| 277 | \section*{Zakharov Function} |
---|
| 278 | \begin{equation*} |
---|
| 279 | f(x)=\sum\limits_{i=1}^n x_i^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^2+\left(\sum\limits_{i=1}^n 0.5ix_i\right)^4 |
---|
| 280 | \end{equation*} |
---|
| 281 | |
---|
| 282 | \begin{tabbing} |
---|
| 283 | \hspace{5cm}\=\kill |
---|
| 284 | \textbf{Dimensions:} \> $n$ \\ |
---|
| 285 | \textbf{Domain:} \> $-5.0 \leq x_i \leq 10.0$ \\ |
---|
| 286 | \textbf{Global Optimum:} \> $f(x) = 0.0$ at $x = (0.0, 0.0, \dots, 0.0)$ \\ |
---|
| 287 | \textbf{Operator:} \> ZakharovEvaluator \\ |
---|
| 288 | \textbf{Charts:} \> \\ |
---|
| 289 | \end{tabbing} |
---|
| 290 | |
---|
| 291 | \begin{figure}[ht] |
---|
| 292 | \includegraphics[width=\textwidth]{Images/Zakharov} |
---|
| 293 | \caption{Zakharov function [-5.0, 10.0].} |
---|
| 294 | \end{figure} |
---|
| 295 | |
---|
| 296 | \end{document} |
---|