1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
6 | using HeuristicLab.Common;
|
---|
7 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
8 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
9 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
|
---|
10 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
11 | using HeuristicLab.Random;
|
---|
12 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
13 |
|
---|
14 | namespace HeuristicLab.Problems.DataAnalysis.Tests {
|
---|
15 |
|
---|
16 | [TestClass()]
|
---|
17 | public class ClassificationVariableImpactCalculationTest {
|
---|
18 | private TestContext testContextInstance;
|
---|
19 | /// <summary>
|
---|
20 | ///Gets or sets the test context which provides
|
---|
21 | ///information about and functionality for the current test run.
|
---|
22 | ///</summary>
|
---|
23 | public TestContext TestContext {
|
---|
24 | get { return testContextInstance; }
|
---|
25 | set { testContextInstance = value; }
|
---|
26 | }
|
---|
27 |
|
---|
28 |
|
---|
29 | [TestMethod]
|
---|
30 | [TestCategory("Problems.DataAnalysis")]
|
---|
31 | [TestProperty("Time", "short")]
|
---|
32 | public void ConstantModelVariableImpactTest() {
|
---|
33 | IClassificationProblemData problemData = LoadIrisProblem();
|
---|
34 | IClassificationModel model = new ConstantModel(5, "y");
|
---|
35 | IClassificationSolution solution = new ClassificationSolution(model, problemData);
|
---|
36 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForConstantModel();
|
---|
37 |
|
---|
38 | CheckDefaultAsserts(solution, expectedImpacts);
|
---|
39 | }
|
---|
40 |
|
---|
41 | [TestMethod]
|
---|
42 | [TestCategory("Problems.DataAnalysis")]
|
---|
43 | [TestProperty("Time", "short")]
|
---|
44 | public void KNNIrisVariableImpactTest() {
|
---|
45 | IClassificationProblemData problemData = LoadIrisProblem();
|
---|
46 | IClassificationSolution solution = NearestNeighbourClassification.CreateNearestNeighbourClassificationSolution(problemData, 3);
|
---|
47 | ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
48 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForIrisKNNModel();
|
---|
49 |
|
---|
50 | CheckDefaultAsserts(solution, expectedImpacts);
|
---|
51 | }
|
---|
52 |
|
---|
53 |
|
---|
54 | [TestMethod]
|
---|
55 | [TestCategory("Problems.DataAnalysis")]
|
---|
56 | [TestProperty("Time", "short")]
|
---|
57 | public void LDAIrisVariableImpactTest() {
|
---|
58 | IClassificationProblemData problemData = LoadIrisProblem();
|
---|
59 | IClassificationSolution solution = LinearDiscriminantAnalysis.CreateLinearDiscriminantAnalysisSolution(problemData);
|
---|
60 | ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
61 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForIrisLDAModel();
|
---|
62 |
|
---|
63 | CheckDefaultAsserts(solution, expectedImpacts);
|
---|
64 | }
|
---|
65 |
|
---|
66 |
|
---|
67 | [TestMethod]
|
---|
68 | [TestCategory("Problems.DataAnalysis")]
|
---|
69 | [TestProperty("Time", "short")]
|
---|
70 | public void CustomModelVariableImpactTest() {
|
---|
71 | IClassificationProblemData problemData = CreateDefaultProblem();
|
---|
72 | ISymbolicExpressionTree tree = CreateCustomExpressionTree();
|
---|
73 | var model = new SymbolicNearestNeighbourClassificationModel(problemData.TargetVariable, 3, tree, new SymbolicDataAnalysisExpressionTreeInterpreter());
|
---|
74 | model.RecalculateModelParameters(problemData, problemData.TrainingIndices);
|
---|
75 | IClassificationSolution solution = new ClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
76 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForCustomProblem();
|
---|
77 |
|
---|
78 | CheckDefaultAsserts(solution, expectedImpacts);
|
---|
79 | }
|
---|
80 |
|
---|
81 | [TestMethod]
|
---|
82 | [TestCategory("Problems.DataAnalysis")]
|
---|
83 | [TestProperty("Time", "short")]
|
---|
84 | public void CustomModelVariableImpactNoInfluenceTest() {
|
---|
85 | IClassificationProblemData problemData = CreateDefaultProblem();
|
---|
86 | ISymbolicExpressionTree tree = CreateCustomExpressionTreeNoInfluenceX1();
|
---|
87 | var model = new SymbolicNearestNeighbourClassificationModel(problemData.TargetVariable, 3, tree, new SymbolicDataAnalysisExpressionTreeInterpreter());
|
---|
88 | model.RecalculateModelParameters(problemData, problemData.TrainingIndices);
|
---|
89 | IClassificationSolution solution = new ClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
90 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForCustomProblemNoInfluence();
|
---|
91 |
|
---|
92 | CheckDefaultAsserts(solution, expectedImpacts);
|
---|
93 | }
|
---|
94 |
|
---|
95 | [TestMethod]
|
---|
96 | [TestCategory("Problems.DataAnalysis")]
|
---|
97 | [TestProperty("Time", "short")]
|
---|
98 | [ExpectedException(typeof(ArgumentException))]
|
---|
99 | public void WrongDataSetVariableImpactClassificationTest() {
|
---|
100 | IClassificationProblemData problemData = LoadIrisProblem();
|
---|
101 | IClassificationSolution solution = NearestNeighbourClassification.CreateNearestNeighbourClassificationSolution(problemData, 3);
|
---|
102 | ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
103 | Dictionary<string, double> expectedImpacts = GetExpectedValuesForIrisKNNModel();
|
---|
104 |
|
---|
105 | solution.ProblemData = LoadMammographyProblem();
|
---|
106 | ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | [TestMethod]
|
---|
111 | [TestCategory("Problems.DataAnalysis")]
|
---|
112 | [TestProperty("Time", "medium")]
|
---|
113 | public void PerformanceVariableImpactClassificationTest() {
|
---|
114 | int rows = 1500;
|
---|
115 | int columns = 77;
|
---|
116 | IClassificationProblemData problemData = CreateDefaultProblem(rows, columns);
|
---|
117 | IClassificationSolution solution = NearestNeighbourClassification.CreateNearestNeighbourClassificationSolution(problemData, 3);
|
---|
118 |
|
---|
119 | Stopwatch watch = new Stopwatch();
|
---|
120 | watch.Start();
|
---|
121 | var results = ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
122 | watch.Stop();
|
---|
123 |
|
---|
124 | TestContext.WriteLine("");
|
---|
125 | TestContext.WriteLine("Calculated cells per millisecond: {0}.", rows * columns / watch.ElapsedMilliseconds);
|
---|
126 | }
|
---|
127 |
|
---|
128 | #region Load ClassificationProblemData
|
---|
129 | private IClassificationProblemData LoadIrisProblem() {
|
---|
130 | UCIInstanceProvider provider = new UCIInstanceProvider();
|
---|
131 | var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("Iris, M. Marshall, 1988")).Single();
|
---|
132 | return provider.LoadData(instance);
|
---|
133 | }
|
---|
134 | private IClassificationProblemData LoadMammographyProblem() {
|
---|
135 | UCIInstanceProvider provider = new UCIInstanceProvider();
|
---|
136 | var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("Mammography, M. Elter, 2007")).Single();
|
---|
137 | return provider.LoadData(instance);
|
---|
138 | }
|
---|
139 | private IClassificationProblemData CreateDefaultProblem() {
|
---|
140 | List<string> allowedInputVariables = new List<string>() { "x1", "x2", "x3", "x4", "x5" };
|
---|
141 | string targetVariable = "y";
|
---|
142 | var variableNames = allowedInputVariables.Union(targetVariable.ToEnumerable());
|
---|
143 | double[,] variableValues = new double[100, variableNames.Count()];
|
---|
144 |
|
---|
145 | FastRandom random = new FastRandom(12345);
|
---|
146 | int len0 = variableValues.GetLength(0);
|
---|
147 | int len1 = variableValues.GetLength(1);
|
---|
148 | for (int i = 0; i < len0; i++) {
|
---|
149 | for (int j = 0; j < len1; j++) {
|
---|
150 | if (j == len1 - 1) {
|
---|
151 | variableValues[i, j] = (j + i) % 2;
|
---|
152 | } else {
|
---|
153 | variableValues[i, j] = random.Next(1, 100);
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | Dataset dataset = new Dataset(variableNames, variableValues);
|
---|
159 | var ret = new ClassificationProblemData(dataset, allowedInputVariables, targetVariable);
|
---|
160 |
|
---|
161 | ret.SetClassName(0, "NOK");
|
---|
162 | ret.SetClassName(1, "OK");
|
---|
163 | return ret;
|
---|
164 | }
|
---|
165 |
|
---|
166 | private IClassificationProblemData CreateDefaultProblem(int rows, int columns) {
|
---|
167 | List<string> allowedInputVariables = Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()).ToList();
|
---|
168 | string targetVariable = "y";
|
---|
169 | var variableNames = allowedInputVariables.Union(targetVariable.ToEnumerable());
|
---|
170 | double[,] variableValues = new double[rows, columns];
|
---|
171 |
|
---|
172 | FastRandom random = new FastRandom(12345);
|
---|
173 | int len0 = variableValues.GetLength(0);
|
---|
174 | int len1 = variableValues.GetLength(1);
|
---|
175 | for (int i = 0; i < len0; i++) {
|
---|
176 | for (int j = 0; j < len1; j++) {
|
---|
177 | if (j == len1 - 1) {
|
---|
178 | variableValues[i, j] = (j + i) % 2;
|
---|
179 | } else {
|
---|
180 | variableValues[i, j] = random.Next(1, 100);
|
---|
181 | }
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | Dataset dataset = new Dataset(variableNames, variableValues);
|
---|
186 | var ret = new ClassificationProblemData(dataset, allowedInputVariables, targetVariable);
|
---|
187 |
|
---|
188 | ret.SetClassName(0, "NOK");
|
---|
189 | ret.SetClassName(1, "OK");
|
---|
190 | return ret;
|
---|
191 | }
|
---|
192 |
|
---|
193 | #endregion
|
---|
194 |
|
---|
195 | #region Create SymbolicExpressionTree
|
---|
196 | private ISymbolicExpressionTree CreateCustomExpressionTree() {
|
---|
197 | return new InfixExpressionParser().Parse("x1*x2 - x2*x2 + x3*x3 + x4*x4 - x5*x5 + 14/12");
|
---|
198 | }
|
---|
199 | private ISymbolicExpressionTree CreateCustomExpressionTreeNoInfluenceX1() {
|
---|
200 | return new InfixExpressionParser().Parse("x1/x1*x2 - x2*x2 + x3*x3 + x4*x4 - x5*x5 + 14/12");
|
---|
201 | }
|
---|
202 | #endregion
|
---|
203 |
|
---|
204 | #region Get Expected Values
|
---|
205 | private Dictionary<string, double> GetExpectedValuesForConstantModel() {
|
---|
206 | Dictionary<string, double> expectedImpacts = new Dictionary<string, double>();
|
---|
207 | expectedImpacts.Add("petal_length", 0);
|
---|
208 | expectedImpacts.Add("petal_width", 0);
|
---|
209 | expectedImpacts.Add("sepal_length", 0);
|
---|
210 | expectedImpacts.Add("sepal_width", 0);
|
---|
211 |
|
---|
212 | return expectedImpacts;
|
---|
213 | }
|
---|
214 | private Dictionary<string, double> GetExpectedValuesForIrisKNNModel() {
|
---|
215 | Dictionary<string, double> expectedImpacts = new Dictionary<string, double>();
|
---|
216 | expectedImpacts.Add("petal_length", 0.22);
|
---|
217 | expectedImpacts.Add("petal_width", 0.35);
|
---|
218 | expectedImpacts.Add("sepal_length", 0.15);
|
---|
219 | expectedImpacts.Add("sepal_width", 0.05);
|
---|
220 |
|
---|
221 | return expectedImpacts;
|
---|
222 | }
|
---|
223 | private Dictionary<string, double> GetExpectedValuesForCustomProblem() {
|
---|
224 | Dictionary<string, double> expectedImpacts = new Dictionary<string, double>();
|
---|
225 | expectedImpacts.Add("x1", 0.04);
|
---|
226 | expectedImpacts.Add("x2", 0.22);
|
---|
227 | expectedImpacts.Add("x3", 0.26);
|
---|
228 | expectedImpacts.Add("x4", 0.24);
|
---|
229 | expectedImpacts.Add("x5", 0.2);
|
---|
230 |
|
---|
231 | return expectedImpacts;
|
---|
232 | }
|
---|
233 | private Dictionary<string, double> GetExpectedValuesForCustomProblemNoInfluence() {
|
---|
234 | Dictionary<string, double> expectedImpacts = new Dictionary<string, double>();
|
---|
235 | expectedImpacts.Add("x1", 0);
|
---|
236 | expectedImpacts.Add("x2", 0.22);
|
---|
237 | expectedImpacts.Add("x3", 0.14);
|
---|
238 | expectedImpacts.Add("x4", 0.3);
|
---|
239 | expectedImpacts.Add("x5", 0.44);
|
---|
240 |
|
---|
241 | return expectedImpacts;
|
---|
242 | }
|
---|
243 | private Dictionary<string, double> GetExpectedValuesForIrisLDAModel() {
|
---|
244 | Dictionary<string, double> expectedImpacts = new Dictionary<string, double>();
|
---|
245 | expectedImpacts.Add("sepal_width", 0.01);
|
---|
246 | expectedImpacts.Add("sepal_length", 0.03);
|
---|
247 | expectedImpacts.Add("petal_width", 0.2);
|
---|
248 | expectedImpacts.Add("petal_length", 0.5);
|
---|
249 |
|
---|
250 | return expectedImpacts;
|
---|
251 | }
|
---|
252 | #endregion
|
---|
253 |
|
---|
254 | private void CheckDefaultAsserts(IClassificationSolution solution, Dictionary<string, double> expectedImpacts) {
|
---|
255 | IClassificationProblemData problemData = solution.ProblemData;
|
---|
256 | IEnumerable<double> estimatedValues = solution.GetEstimatedClassValues(solution.ProblemData.TrainingIndices);
|
---|
257 |
|
---|
258 | var solutionImpacts = ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution);
|
---|
259 | var modelImpacts = ClassificationSolutionVariableImpactsCalculator.CalculateImpacts(solution.Model, problemData, estimatedValues, problemData.TrainingIndices);
|
---|
260 |
|
---|
261 | //Both ways should return equal results
|
---|
262 | Assert.IsTrue(solutionImpacts.SequenceEqual(modelImpacts));
|
---|
263 |
|
---|
264 | //Check if impacts are as expected
|
---|
265 | Assert.AreEqual(modelImpacts.Count(), expectedImpacts.Count);
|
---|
266 | Assert.IsTrue(modelImpacts.All(v => v.Item2.IsAlmost(expectedImpacts[v.Item1])));
|
---|
267 | }
|
---|
268 | }
|
---|
269 | }
|
---|