[17643] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
[17649] | 4 | using HeuristicLab.Common;
|
---|
[17643] | 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[17677] | 8 | public class FeynmanBonus16 : FeynmanDescriptor {
|
---|
[17643] | 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
[17677] | 12 | public FeynmanBonus16() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
[17643] | 13 |
|
---|
[17677] | 14 | public FeynmanBonus16(int seed) {
|
---|
[17643] | 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
[17649] | 18 | noiseRatio = null;
|
---|
[17643] | 19 | }
|
---|
| 20 |
|
---|
[17677] | 21 | public FeynmanBonus16(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
[17643] | 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
[17649] | 25 | this.noiseRatio = noiseRatio;
|
---|
[17643] | 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
[17649] | 30 | return string.Format(
|
---|
[17805] | 31 | "Jackson 4.60: Ef*cos(theta)*((alpha-1)/(alpha+2)*d**3/r**2-r) | {0}",
|
---|
| 32 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17643] | 33 | }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
[17649] | 36 | protected override string TargetVariable { get { return noiseRatio == null ? "Volt" : "Volt_noise"; } }
|
---|
| 37 |
|
---|
| 38 | protected override string[] VariableNames {
|
---|
| 39 | get { return new[] {"Ef", "theta", "r", "d", "alpha", noiseRatio == null ? "Volt" : "Volt_noise"}; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
[17643] | 42 | protected override string[] AllowedInputVariables { get { return new[] {"Ef", "theta", "r", "d", "alpha"}; } }
|
---|
| 43 |
|
---|
| 44 | public int Seed { get; private set; }
|
---|
| 45 |
|
---|
| 46 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 47 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 49 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 50 |
|
---|
| 51 | protected override List<List<double>> GenerateValues() {
|
---|
| 52 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 53 |
|
---|
| 54 | var data = new List<List<double>>();
|
---|
| 55 | var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 56 | var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList();
|
---|
| 57 | var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 58 | var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 59 | var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 60 |
|
---|
| 61 | var Volt = new List<double>();
|
---|
| 62 |
|
---|
| 63 | data.Add(Ef);
|
---|
| 64 | data.Add(theta);
|
---|
| 65 | data.Add(r);
|
---|
| 66 | data.Add(d);
|
---|
| 67 | data.Add(alpha);
|
---|
| 68 | data.Add(Volt);
|
---|
| 69 |
|
---|
| 70 | for (var i = 0; i < Ef.Count; i++) {
|
---|
| 71 | var res = Ef[i] * Math.Cos(theta[i]) *
|
---|
[17674] | 72 | ((alpha[i] - 1) / (alpha[i] + 2) * Math.Pow(d[i], 3) / Math.Pow(r[i], 2) - r[i] );
|
---|
[17643] | 73 | Volt.Add(res);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
[17649] | 76 | if (noiseRatio != null) {
|
---|
| 77 | var Volt_noise = new List<double>();
|
---|
[17805] | 78 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop();
|
---|
[17649] | 79 | Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 80 | data.Remove(Volt);
|
---|
| 81 | data.Add(Volt_noise);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
[17643] | 84 | return data;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | } |
---|