Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus16.cs

Last change on this file was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.2 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus16 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus16() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus16(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus16(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Jackson 4.60: Ef*cos(theta)*((alpha-1)/(alpha+2)*d**3/r**2-r) | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "Volt" : "Volt_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return noiseRatio == null ? new[] { "Ef", "theta", "r", "d", "alpha", "Volt" } : new[] { "Ef", "theta", "r", "d", "alpha", "Volt", "Volt_noise" }; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"Ef", "theta", "r", "d", "alpha"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var Ef    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList();
57      var r     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var d     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60
61      var Volt = new List<double>();
62
63      data.Add(Ef);
64      data.Add(theta);
65      data.Add(r);
66      data.Add(d);
67      data.Add(alpha);
68      data.Add(Volt);
69
70      for (var i = 0; i < Ef.Count; i++) {
71        var res = Ef[i] * Math.Cos(theta[i]) *
72                  ((alpha[i] - 1) / (alpha[i] + 2) * Math.Pow(d[i], 3) / Math.Pow(r[i], 2) - r[i] );
73        Volt.Add(res);
74      }
75
76      var targetNoise = ValueGenerator.GenerateNoise(Volt, rand, noiseRatio);
77      if (targetNoise != null) data.Add(targetNoise);
78
79      return data;
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.