Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs @ 16796

Last change on this file since 16796 was 16670, checked in by gkronber, 6 years ago

#2866: bugfixes for r16668

File size: 23.7 KB
RevLine 
[5571]1#region License Information
2/* HeuristicLab
[16565]3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5571]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
[6740]26using HeuristicLab.Data;
[5571]27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[6740]28using HeuristicLab.Parameters;
[16565]29using HEAL.Attic;
[5571]30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[16565]32  [StorableType("FB94F333-B32A-44FB-A561-CBDE76693D20")]
[5571]33  [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
[13248]34  public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
35    ISymbolicDataAnalysisExpressionTreeInterpreter {
[5749]36    private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
[13248]37    private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
[7615]38    private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
[5571]39
[13248]40    public override bool CanChangeName {
41      get { return false; }
42    }
[5571]43
[13248]44    public override bool CanChangeDescription {
45      get { return false; }
46    }
47
[5749]48    #region parameter properties
[13248]49    public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
50      get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
[5749]51    }
[7615]52
[13248]53    public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
[7615]55    }
[5749]56    #endregion
57
58    #region properties
[13248]59    public bool CheckExpressionsWithIntervalArithmetic {
60      get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
61      set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
[5749]62    }
[7615]63
[13248]64    public int EvaluatedSolutions {
65      get { return EvaluatedSolutionsParameter.Value.Value; }
66      set { EvaluatedSolutionsParameter.Value.Value = value; }
[7615]67    }
[5749]68    #endregion
69
[5571]70    [StorableConstructor]
[16565]71    protected SymbolicDataAnalysisExpressionTreeInterpreter(StorableConstructorFlag _) : base(_) { }
[13248]72
73    protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original,
[13251]74      Cloner cloner)
75      : base(original, cloner) { }
[13248]76
[5571]77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
79    }
80
81    public SymbolicDataAnalysisExpressionTreeInterpreter()
[5749]82      : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
[13248]83      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
84      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
[5571]85    }
86
[8436]87    protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
88      : base(name, description) {
[13248]89      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
90      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
[8436]91    }
92
[7615]93    [StorableHook(HookType.AfterDeserialization)]
94    private void AfterDeserialization() {
[13248]95      var evaluatedSolutions = new IntValue(0);
96      var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
97      if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
98        var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
99        evaluatedSolutions = evaluatedSolutionsParameter.Value;
100        Parameters.Remove(EvaluatedSolutionsParameterName);
101      }
102      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
103      if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
104        var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
105        Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
106        checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
107      }
108      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
[7615]109    }
110
111    #region IStatefulItem
112    public void InitializeState() {
[13248]113      EvaluatedSolutions = 0;
[7615]114    }
115
[13248]116    public void ClearState() { }
[7615]117    #endregion
118
[13251]119    private readonly object syncRoot = new object();
[13248]120    public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset,
121      IEnumerable<int> rows) {
122      if (CheckExpressionsWithIntervalArithmetic) {
[8436]123        throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
[13248]124      }
[7120]125
[13251]126      lock (syncRoot) {
[13248]127        EvaluatedSolutions++; // increment the evaluated solutions counter
[9004]128      }
[8436]129      var state = PrepareInterpreterState(tree, dataset);
130
131      foreach (var rowEnum in rows) {
132        int row = rowEnum;
133        yield return Evaluate(dataset, ref row, state);
134        state.Reset();
135      }
[7154]136    }
137
[12509]138    private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
[8436]139      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
[5987]140      int necessaryArgStackSize = 0;
[8436]141      foreach (Instruction instr in code) {
[6860]142        if (instr.opCode == OpCodes.Variable) {
[8436]143          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
[9828]144          instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
[14826]145        } else if (instr.opCode == OpCodes.FactorVariable) {
146          var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
147          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
148        } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
149          var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
150          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
[5571]151        } else if (instr.opCode == OpCodes.LagVariable) {
[8436]152          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
[9828]153          instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
[6860]154        } else if (instr.opCode == OpCodes.VariableCondition) {
[8436]155          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
[9828]156          instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
[5987]157        } else if (instr.opCode == OpCodes.Call) {
158          necessaryArgStackSize += instr.nArguments + 1;
[5571]159        }
160      }
[8436]161      return new InterpreterState(code, necessaryArgStackSize);
162    }
[5571]163
[12509]164    public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) {
[5571]165      Instruction currentInstr = state.NextInstruction();
166      switch (currentInstr.opCode) {
167        case OpCodes.Add: {
[8436]168            double s = Evaluate(dataset, ref row, state);
[5571]169            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]170              s += Evaluate(dataset, ref row, state);
[5571]171            }
172            return s;
173          }
174        case OpCodes.Sub: {
[8436]175            double s = Evaluate(dataset, ref row, state);
[5571]176            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]177              s -= Evaluate(dataset, ref row, state);
[5571]178            }
[13248]179            if (currentInstr.nArguments == 1) { s = -s; }
[5571]180            return s;
181          }
182        case OpCodes.Mul: {
[8436]183            double p = Evaluate(dataset, ref row, state);
[5571]184            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]185              p *= Evaluate(dataset, ref row, state);
[5571]186            }
187            return p;
188          }
189        case OpCodes.Div: {
[8436]190            double p = Evaluate(dataset, ref row, state);
[5571]191            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]192              p /= Evaluate(dataset, ref row, state);
[5571]193            }
[13248]194            if (currentInstr.nArguments == 1) { p = 1.0 / p; }
[5571]195            return p;
196          }
197        case OpCodes.Average: {
[8436]198            double sum = Evaluate(dataset, ref row, state);
[5571]199            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]200              sum += Evaluate(dataset, ref row, state);
[5571]201            }
202            return sum / currentInstr.nArguments;
203          }
[16356]204        case OpCodes.Absolute: {
205            return Math.Abs(Evaluate(dataset, ref row, state));
206          }
[16656]207        case OpCodes.Tanh: {
208            return Math.Tanh(Evaluate(dataset, ref row, state));
209          }
[5571]210        case OpCodes.Cos: {
[8436]211            return Math.Cos(Evaluate(dataset, ref row, state));
[5571]212          }
213        case OpCodes.Sin: {
[8436]214            return Math.Sin(Evaluate(dataset, ref row, state));
[5571]215          }
216        case OpCodes.Tan: {
[8436]217            return Math.Tan(Evaluate(dataset, ref row, state));
[5571]218          }
[7842]219        case OpCodes.Square: {
[8436]220            return Math.Pow(Evaluate(dataset, ref row, state), 2);
[7842]221          }
[16356]222        case OpCodes.Cube: {
223            return Math.Pow(Evaluate(dataset, ref row, state), 3);
224          }
[5571]225        case OpCodes.Power: {
[8436]226            double x = Evaluate(dataset, ref row, state);
227            double y = Math.Round(Evaluate(dataset, ref row, state));
[5571]228            return Math.Pow(x, y);
229          }
[7842]230        case OpCodes.SquareRoot: {
[8436]231            return Math.Sqrt(Evaluate(dataset, ref row, state));
[7842]232          }
[16356]233        case OpCodes.CubeRoot: {
234            return Math.Pow(Evaluate(dataset, ref row, state), 1.0 / 3.0);
235          }
[5571]236        case OpCodes.Root: {
[8436]237            double x = Evaluate(dataset, ref row, state);
238            double y = Math.Round(Evaluate(dataset, ref row, state));
[5571]239            return Math.Pow(x, 1 / y);
240          }
241        case OpCodes.Exp: {
[8436]242            return Math.Exp(Evaluate(dataset, ref row, state));
[5571]243          }
244        case OpCodes.Log: {
[8436]245            return Math.Log(Evaluate(dataset, ref row, state));
[5571]246          }
[7842]247        case OpCodes.Gamma: {
[8436]248            var x = Evaluate(dataset, ref row, state);
[13248]249            if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); }
[7842]250          }
251        case OpCodes.Psi: {
[8436]252            var x = Evaluate(dataset, ref row, state);
[7842]253            if (double.IsNaN(x)) return double.NaN;
[8430]254            else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN;
[7842]255            return alglib.psi(x);
256          }
257        case OpCodes.Dawson: {
[8436]258            var x = Evaluate(dataset, ref row, state);
[13248]259            if (double.IsNaN(x)) { return double.NaN; }
[7842]260            return alglib.dawsonintegral(x);
261          }
262        case OpCodes.ExponentialIntegralEi: {
[8436]263            var x = Evaluate(dataset, ref row, state);
[13248]264            if (double.IsNaN(x)) { return double.NaN; }
[7842]265            return alglib.exponentialintegralei(x);
266          }
267        case OpCodes.SineIntegral: {
268            double si, ci;
[8436]269            var x = Evaluate(dataset, ref row, state);
[7842]270            if (double.IsNaN(x)) return double.NaN;
271            else {
272              alglib.sinecosineintegrals(x, out si, out ci);
273              return si;
274            }
275          }
276        case OpCodes.CosineIntegral: {
277            double si, ci;
[8436]278            var x = Evaluate(dataset, ref row, state);
[7842]279            if (double.IsNaN(x)) return double.NaN;
280            else {
281              alglib.sinecosineintegrals(x, out si, out ci);
282              return ci;
283            }
284          }
285        case OpCodes.HyperbolicSineIntegral: {
286            double shi, chi;
[8436]287            var x = Evaluate(dataset, ref row, state);
[7842]288            if (double.IsNaN(x)) return double.NaN;
289            else {
290              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
291              return shi;
292            }
293          }
294        case OpCodes.HyperbolicCosineIntegral: {
295            double shi, chi;
[8436]296            var x = Evaluate(dataset, ref row, state);
[7842]297            if (double.IsNaN(x)) return double.NaN;
298            else {
299              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
300              return chi;
301            }
302          }
303        case OpCodes.FresnelCosineIntegral: {
304            double c = 0, s = 0;
[8436]305            var x = Evaluate(dataset, ref row, state);
[7842]306            if (double.IsNaN(x)) return double.NaN;
307            else {
308              alglib.fresnelintegral(x, ref c, ref s);
309              return c;
310            }
311          }
312        case OpCodes.FresnelSineIntegral: {
313            double c = 0, s = 0;
[8436]314            var x = Evaluate(dataset, ref row, state);
[7842]315            if (double.IsNaN(x)) return double.NaN;
316            else {
317              alglib.fresnelintegral(x, ref c, ref s);
318              return s;
319            }
320          }
321        case OpCodes.AiryA: {
322            double ai, aip, bi, bip;
[8436]323            var x = Evaluate(dataset, ref row, state);
[7842]324            if (double.IsNaN(x)) return double.NaN;
325            else {
326              alglib.airy(x, out ai, out aip, out bi, out bip);
327              return ai;
328            }
329          }
330        case OpCodes.AiryB: {
331            double ai, aip, bi, bip;
[8436]332            var x = Evaluate(dataset, ref row, state);
[7842]333            if (double.IsNaN(x)) return double.NaN;
334            else {
335              alglib.airy(x, out ai, out aip, out bi, out bip);
336              return bi;
337            }
338          }
339        case OpCodes.Norm: {
[8436]340            var x = Evaluate(dataset, ref row, state);
[7842]341            if (double.IsNaN(x)) return double.NaN;
342            else return alglib.normaldistribution(x);
343          }
344        case OpCodes.Erf: {
[8436]345            var x = Evaluate(dataset, ref row, state);
[7842]346            if (double.IsNaN(x)) return double.NaN;
347            else return alglib.errorfunction(x);
348          }
349        case OpCodes.Bessel: {
[8436]350            var x = Evaluate(dataset, ref row, state);
[7842]351            if (double.IsNaN(x)) return double.NaN;
352            else return alglib.besseli0(x);
353          }
[16356]354
[16360]355        case OpCodes.AnalyticQuotient: {
[16356]356            var x1 = Evaluate(dataset, ref row, state);
357            var x2 = Evaluate(dataset, ref row, state);
358            return x1 / Math.Pow(1 + x2 * x2, 0.5);
359          }
[5571]360        case OpCodes.IfThenElse: {
[8436]361            double condition = Evaluate(dataset, ref row, state);
[5571]362            double result;
363            if (condition > 0.0) {
[8436]364              result = Evaluate(dataset, ref row, state); state.SkipInstructions();
[5571]365            } else {
[8436]366              state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
[5571]367            }
368            return result;
369          }
370        case OpCodes.AND: {
[8436]371            double result = Evaluate(dataset, ref row, state);
[5571]372            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]373              if (result > 0.0) result = Evaluate(dataset, ref row, state);
[5571]374              else {
[8436]375                state.SkipInstructions();
[5571]376              }
377            }
[6732]378            return result > 0.0 ? 1.0 : -1.0;
[5571]379          }
380        case OpCodes.OR: {
[8436]381            double result = Evaluate(dataset, ref row, state);
[5571]382            for (int i = 1; i < currentInstr.nArguments; i++) {
[8436]383              if (result <= 0.0) result = Evaluate(dataset, ref row, state);
[5571]384              else {
[8436]385                state.SkipInstructions();
[5571]386              }
387            }
388            return result > 0.0 ? 1.0 : -1.0;
389          }
390        case OpCodes.NOT: {
[8436]391            return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
[5571]392          }
[10774]393        case OpCodes.XOR: {
[10788]394            //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd
395            // this is equal to a consecutive execution of binary XOR operations.
396            int positiveSignals = 0;
397            for (int i = 0; i < currentInstr.nArguments; i++) {
[13248]398              if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; }
[10774]399            }
[10788]400            return positiveSignals % 2 != 0 ? 1.0 : -1.0;
[10774]401          }
[5571]402        case OpCodes.GT: {
[8436]403            double x = Evaluate(dataset, ref row, state);
404            double y = Evaluate(dataset, ref row, state);
[13248]405            if (x > y) { return 1.0; } else { return -1.0; }
[5571]406          }
407        case OpCodes.LT: {
[8436]408            double x = Evaluate(dataset, ref row, state);
409            double y = Evaluate(dataset, ref row, state);
[13248]410            if (x < y) { return 1.0; } else { return -1.0; }
[5571]411          }
412        case OpCodes.TimeLag: {
413            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
414            row += timeLagTreeNode.Lag;
[8436]415            double result = Evaluate(dataset, ref row, state);
[5571]416            row -= timeLagTreeNode.Lag;
417            return result;
418          }
419        case OpCodes.Integral: {
420            int savedPc = state.ProgramCounter;
421            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
422            double sum = 0.0;
423            for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
424              row += Math.Sign(timeLagTreeNode.Lag);
[8436]425              sum += Evaluate(dataset, ref row, state);
[5571]426              state.ProgramCounter = savedPc;
427            }
428            row -= timeLagTreeNode.Lag;
[8436]429            sum += Evaluate(dataset, ref row, state);
[5571]430            return sum;
431          }
432
433        //mkommend: derivate calculation taken from:
434        //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
435        //one sided smooth differentiatior, N = 4
436        // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
437        case OpCodes.Derivative: {
438            int savedPc = state.ProgramCounter;
[8436]439            double f_0 = Evaluate(dataset, ref row, state); row--;
[5571]440            state.ProgramCounter = savedPc;
[8436]441            double f_1 = Evaluate(dataset, ref row, state); row -= 2;
[5571]442            state.ProgramCounter = savedPc;
[8436]443            double f_3 = Evaluate(dataset, ref row, state); row--;
[5571]444            state.ProgramCounter = savedPc;
[8436]445            double f_4 = Evaluate(dataset, ref row, state);
[5571]446            row += 4;
447
448            return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
449          }
450        case OpCodes.Call: {
451            // evaluate sub-trees
452            double[] argValues = new double[currentInstr.nArguments];
453            for (int i = 0; i < currentInstr.nArguments; i++) {
[8436]454              argValues[i] = Evaluate(dataset, ref row, state);
[5571]455            }
456            // push on argument values on stack
457            state.CreateStackFrame(argValues);
458
459            // save the pc
460            int savedPc = state.ProgramCounter;
461            // set pc to start of function 
[9828]462            state.ProgramCounter = (ushort)currentInstr.data;
[5571]463            // evaluate the function
[8436]464            double v = Evaluate(dataset, ref row, state);
[5571]465
466            // delete the stack frame
467            state.RemoveStackFrame();
468
469            // restore the pc => evaluation will continue at point after my subtrees 
470            state.ProgramCounter = savedPc;
471            return v;
472          }
473        case OpCodes.Arg: {
[9828]474            return state.GetStackFrameValue((ushort)currentInstr.data);
[5571]475          }
476        case OpCodes.Variable: {
[8486]477            if (row < 0 || row >= dataset.Rows) return double.NaN;
[6740]478            var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
[9828]479            return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight;
[5571]480          }
[14826]481        case OpCodes.BinaryFactorVariable: {
482            if (row < 0 || row >= dataset.Rows) return double.NaN;
483            var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
484            return ((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0;
485          }
486        case OpCodes.FactorVariable: {
487            if (row < 0 || row >= dataset.Rows) return double.NaN;
488            var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
489            return factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]);
490          }
[5571]491        case OpCodes.LagVariable: {
[6740]492            var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
[5571]493            int actualRow = row + laggedVariableTreeNode.Lag;
[13248]494            if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; }
[9828]495            return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight;
[5571]496          }
497        case OpCodes.Constant: {
[8436]498            var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
[5897]499            return constTreeNode.Value;
[5571]500          }
501
502        //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
503        //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
504        case OpCodes.VariableCondition: {
[8486]505            if (row < 0 || row >= dataset.Rows) return double.NaN;
[5571]506            var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
[14345]507            if (!variableConditionTreeNode.Symbol.IgnoreSlope) {
508              double variableValue = ((IList<double>)currentInstr.data)[row];
509              double x = variableValue - variableConditionTreeNode.Threshold;
510              double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
[5571]511
[14345]512              double trueBranch = Evaluate(dataset, ref row, state);
513              double falseBranch = Evaluate(dataset, ref row, state);
[5571]514
[14345]515              return trueBranch * p + falseBranch * (1 - p);
516            } else {
517              // strict threshold
518              double variableValue = ((IList<double>)currentInstr.data)[row];
519              if (variableValue <= variableConditionTreeNode.Threshold) {
520                var left = Evaluate(dataset, ref row, state);
521                state.SkipInstructions();
522                return left;
523              } else {
524                state.SkipInstructions();
525                return Evaluate(dataset, ref row, state);
526              }
527            }
[5571]528          }
[13248]529        default:
530          throw new NotSupportedException();
[5571]531      }
532    }
533  }
[13248]534}
Note: See TracBrowser for help on using the repository browser.