Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs @ 16668

Last change on this file since 16668 was 16668, checked in by gkronber, 5 years ago

#2866: added support for tanh to the remaining interpreters (native is missing)

File size: 23.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Parameters;
29using HEAL.Attic;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
32  [StorableType("FB94F333-B32A-44FB-A561-CBDE76693D20")]
33  [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
34  public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
35    ISymbolicDataAnalysisExpressionTreeInterpreter {
36    private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
37    private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
38    private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
39
40    public override bool CanChangeName {
41      get { return false; }
42    }
43
44    public override bool CanChangeDescription {
45      get { return false; }
46    }
47
48    #region parameter properties
49    public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
50      get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
51    }
52
53    public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
55    }
56    #endregion
57
58    #region properties
59    public bool CheckExpressionsWithIntervalArithmetic {
60      get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
61      set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
62    }
63
64    public int EvaluatedSolutions {
65      get { return EvaluatedSolutionsParameter.Value.Value; }
66      set { EvaluatedSolutionsParameter.Value.Value = value; }
67    }
68    #endregion
69
70    [StorableConstructor]
71    protected SymbolicDataAnalysisExpressionTreeInterpreter(StorableConstructorFlag _) : base(_) { }
72
73    protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original,
74      Cloner cloner)
75      : base(original, cloner) { }
76
77    public override IDeepCloneable Clone(Cloner cloner) {
78      return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
79    }
80
81    public SymbolicDataAnalysisExpressionTreeInterpreter()
82      : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
83      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
84      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
85    }
86
87    protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
88      : base(name, description) {
89      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
90      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
91    }
92
93    [StorableHook(HookType.AfterDeserialization)]
94    private void AfterDeserialization() {
95      var evaluatedSolutions = new IntValue(0);
96      var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
97      if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
98        var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
99        evaluatedSolutions = evaluatedSolutionsParameter.Value;
100        Parameters.Remove(EvaluatedSolutionsParameterName);
101      }
102      Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
103      if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
104        var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
105        Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
106        checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
107      }
108      Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
109    }
110
111    #region IStatefulItem
112    public void InitializeState() {
113      EvaluatedSolutions = 0;
114    }
115
116    public void ClearState() { }
117    #endregion
118
119    private readonly object syncRoot = new object();
120    public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset,
121      IEnumerable<int> rows) {
122      if (CheckExpressionsWithIntervalArithmetic) {
123        throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
124      }
125
126      lock (syncRoot) {
127        EvaluatedSolutions++; // increment the evaluated solutions counter
128      }
129      var state = PrepareInterpreterState(tree, dataset);
130
131      foreach (var rowEnum in rows) {
132        int row = rowEnum;
133        yield return Evaluate(dataset, ref row, state);
134        state.Reset();
135      }
136    }
137
138    private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
139      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
140      int necessaryArgStackSize = 0;
141      foreach (Instruction instr in code) {
142        if (instr.opCode == OpCodes.Variable) {
143          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
144          instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
145        } else if (instr.opCode == OpCodes.FactorVariable) {
146          var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
147          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
148        } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
149          var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
150          instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
151        } else if (instr.opCode == OpCodes.LagVariable) {
152          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
153          instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
154        } else if (instr.opCode == OpCodes.VariableCondition) {
155          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
156          instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
157        } else if (instr.opCode == OpCodes.Call) {
158          necessaryArgStackSize += instr.nArguments + 1;
159        }
160      }
161      return new InterpreterState(code, necessaryArgStackSize);
162    }
163
164    public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) {
165      Instruction currentInstr = state.NextInstruction();
166      switch (currentInstr.opCode) {
167        case OpCodes.Add: {
168            double s = Evaluate(dataset, ref row, state);
169            for (int i = 1; i < currentInstr.nArguments; i++) {
170              s += Evaluate(dataset, ref row, state);
171            }
172            return s;
173          }
174        case OpCodes.Sub: {
175            double s = Evaluate(dataset, ref row, state);
176            for (int i = 1; i < currentInstr.nArguments; i++) {
177              s -= Evaluate(dataset, ref row, state);
178            }
179            if (currentInstr.nArguments == 1) { s = -s; }
180            return s;
181          }
182        case OpCodes.Mul: {
183            double p = Evaluate(dataset, ref row, state);
184            for (int i = 1; i < currentInstr.nArguments; i++) {
185              p *= Evaluate(dataset, ref row, state);
186            }
187            return p;
188          }
189        case OpCodes.Div: {
190            double p = Evaluate(dataset, ref row, state);
191            for (int i = 1; i < currentInstr.nArguments; i++) {
192              p /= Evaluate(dataset, ref row, state);
193            }
194            if (currentInstr.nArguments == 1) { p = 1.0 / p; }
195            return p;
196          }
197        case OpCodes.Average: {
198            double sum = Evaluate(dataset, ref row, state);
199            for (int i = 1; i < currentInstr.nArguments; i++) {
200              sum += Evaluate(dataset, ref row, state);
201            }
202            return sum / currentInstr.nArguments;
203          }
204        case OpCodes.Absolute: {
205            return Math.Abs(Evaluate(dataset, ref row, state));
206          }
207        case OpCodes.Tanh: {
208            return Math.Tanh(Evaluate(dataset, ref row, state));
209          }
210        case OpCodes.Cos: {
211            return Math.Cos(Evaluate(dataset, ref row, state));
212          }
213        case OpCodes.Sin: {
214            return Math.Sin(Evaluate(dataset, ref row, state));
215          }
216        case OpCodes.Tan: {
217            return Math.Tan(Evaluate(dataset, ref row, state));
218          }
219        case OpCodes.Tanh: {
220            return Math.Tanh(Evaluate(dataset, ref row, state));
221          }
222        case OpCodes.Square: {
223            return Math.Pow(Evaluate(dataset, ref row, state), 2);
224          }
225        case OpCodes.Cube: {
226            return Math.Pow(Evaluate(dataset, ref row, state), 3);
227          }
228        case OpCodes.Power: {
229            double x = Evaluate(dataset, ref row, state);
230            double y = Math.Round(Evaluate(dataset, ref row, state));
231            return Math.Pow(x, y);
232          }
233        case OpCodes.SquareRoot: {
234            return Math.Sqrt(Evaluate(dataset, ref row, state));
235          }
236        case OpCodes.CubeRoot: {
237            return Math.Pow(Evaluate(dataset, ref row, state), 1.0 / 3.0);
238          }
239        case OpCodes.Root: {
240            double x = Evaluate(dataset, ref row, state);
241            double y = Math.Round(Evaluate(dataset, ref row, state));
242            return Math.Pow(x, 1 / y);
243          }
244        case OpCodes.Exp: {
245            return Math.Exp(Evaluate(dataset, ref row, state));
246          }
247        case OpCodes.Log: {
248            return Math.Log(Evaluate(dataset, ref row, state));
249          }
250        case OpCodes.Gamma: {
251            var x = Evaluate(dataset, ref row, state);
252            if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); }
253          }
254        case OpCodes.Psi: {
255            var x = Evaluate(dataset, ref row, state);
256            if (double.IsNaN(x)) return double.NaN;
257            else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN;
258            return alglib.psi(x);
259          }
260        case OpCodes.Dawson: {
261            var x = Evaluate(dataset, ref row, state);
262            if (double.IsNaN(x)) { return double.NaN; }
263            return alglib.dawsonintegral(x);
264          }
265        case OpCodes.ExponentialIntegralEi: {
266            var x = Evaluate(dataset, ref row, state);
267            if (double.IsNaN(x)) { return double.NaN; }
268            return alglib.exponentialintegralei(x);
269          }
270        case OpCodes.SineIntegral: {
271            double si, ci;
272            var x = Evaluate(dataset, ref row, state);
273            if (double.IsNaN(x)) return double.NaN;
274            else {
275              alglib.sinecosineintegrals(x, out si, out ci);
276              return si;
277            }
278          }
279        case OpCodes.CosineIntegral: {
280            double si, ci;
281            var x = Evaluate(dataset, ref row, state);
282            if (double.IsNaN(x)) return double.NaN;
283            else {
284              alglib.sinecosineintegrals(x, out si, out ci);
285              return ci;
286            }
287          }
288        case OpCodes.HyperbolicSineIntegral: {
289            double shi, chi;
290            var x = Evaluate(dataset, ref row, state);
291            if (double.IsNaN(x)) return double.NaN;
292            else {
293              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
294              return shi;
295            }
296          }
297        case OpCodes.HyperbolicCosineIntegral: {
298            double shi, chi;
299            var x = Evaluate(dataset, ref row, state);
300            if (double.IsNaN(x)) return double.NaN;
301            else {
302              alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
303              return chi;
304            }
305          }
306        case OpCodes.FresnelCosineIntegral: {
307            double c = 0, s = 0;
308            var x = Evaluate(dataset, ref row, state);
309            if (double.IsNaN(x)) return double.NaN;
310            else {
311              alglib.fresnelintegral(x, ref c, ref s);
312              return c;
313            }
314          }
315        case OpCodes.FresnelSineIntegral: {
316            double c = 0, s = 0;
317            var x = Evaluate(dataset, ref row, state);
318            if (double.IsNaN(x)) return double.NaN;
319            else {
320              alglib.fresnelintegral(x, ref c, ref s);
321              return s;
322            }
323          }
324        case OpCodes.AiryA: {
325            double ai, aip, bi, bip;
326            var x = Evaluate(dataset, ref row, state);
327            if (double.IsNaN(x)) return double.NaN;
328            else {
329              alglib.airy(x, out ai, out aip, out bi, out bip);
330              return ai;
331            }
332          }
333        case OpCodes.AiryB: {
334            double ai, aip, bi, bip;
335            var x = Evaluate(dataset, ref row, state);
336            if (double.IsNaN(x)) return double.NaN;
337            else {
338              alglib.airy(x, out ai, out aip, out bi, out bip);
339              return bi;
340            }
341          }
342        case OpCodes.Norm: {
343            var x = Evaluate(dataset, ref row, state);
344            if (double.IsNaN(x)) return double.NaN;
345            else return alglib.normaldistribution(x);
346          }
347        case OpCodes.Erf: {
348            var x = Evaluate(dataset, ref row, state);
349            if (double.IsNaN(x)) return double.NaN;
350            else return alglib.errorfunction(x);
351          }
352        case OpCodes.Bessel: {
353            var x = Evaluate(dataset, ref row, state);
354            if (double.IsNaN(x)) return double.NaN;
355            else return alglib.besseli0(x);
356          }
357
358        case OpCodes.AnalyticQuotient: {
359            var x1 = Evaluate(dataset, ref row, state);
360            var x2 = Evaluate(dataset, ref row, state);
361            return x1 / Math.Pow(1 + x2 * x2, 0.5);
362          }
363        case OpCodes.IfThenElse: {
364            double condition = Evaluate(dataset, ref row, state);
365            double result;
366            if (condition > 0.0) {
367              result = Evaluate(dataset, ref row, state); state.SkipInstructions();
368            } else {
369              state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
370            }
371            return result;
372          }
373        case OpCodes.AND: {
374            double result = Evaluate(dataset, ref row, state);
375            for (int i = 1; i < currentInstr.nArguments; i++) {
376              if (result > 0.0) result = Evaluate(dataset, ref row, state);
377              else {
378                state.SkipInstructions();
379              }
380            }
381            return result > 0.0 ? 1.0 : -1.0;
382          }
383        case OpCodes.OR: {
384            double result = Evaluate(dataset, ref row, state);
385            for (int i = 1; i < currentInstr.nArguments; i++) {
386              if (result <= 0.0) result = Evaluate(dataset, ref row, state);
387              else {
388                state.SkipInstructions();
389              }
390            }
391            return result > 0.0 ? 1.0 : -1.0;
392          }
393        case OpCodes.NOT: {
394            return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
395          }
396        case OpCodes.XOR: {
397            //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd
398            // this is equal to a consecutive execution of binary XOR operations.
399            int positiveSignals = 0;
400            for (int i = 0; i < currentInstr.nArguments; i++) {
401              if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; }
402            }
403            return positiveSignals % 2 != 0 ? 1.0 : -1.0;
404          }
405        case OpCodes.GT: {
406            double x = Evaluate(dataset, ref row, state);
407            double y = Evaluate(dataset, ref row, state);
408            if (x > y) { return 1.0; } else { return -1.0; }
409          }
410        case OpCodes.LT: {
411            double x = Evaluate(dataset, ref row, state);
412            double y = Evaluate(dataset, ref row, state);
413            if (x < y) { return 1.0; } else { return -1.0; }
414          }
415        case OpCodes.TimeLag: {
416            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
417            row += timeLagTreeNode.Lag;
418            double result = Evaluate(dataset, ref row, state);
419            row -= timeLagTreeNode.Lag;
420            return result;
421          }
422        case OpCodes.Integral: {
423            int savedPc = state.ProgramCounter;
424            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
425            double sum = 0.0;
426            for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
427              row += Math.Sign(timeLagTreeNode.Lag);
428              sum += Evaluate(dataset, ref row, state);
429              state.ProgramCounter = savedPc;
430            }
431            row -= timeLagTreeNode.Lag;
432            sum += Evaluate(dataset, ref row, state);
433            return sum;
434          }
435
436        //mkommend: derivate calculation taken from:
437        //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
438        //one sided smooth differentiatior, N = 4
439        // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
440        case OpCodes.Derivative: {
441            int savedPc = state.ProgramCounter;
442            double f_0 = Evaluate(dataset, ref row, state); row--;
443            state.ProgramCounter = savedPc;
444            double f_1 = Evaluate(dataset, ref row, state); row -= 2;
445            state.ProgramCounter = savedPc;
446            double f_3 = Evaluate(dataset, ref row, state); row--;
447            state.ProgramCounter = savedPc;
448            double f_4 = Evaluate(dataset, ref row, state);
449            row += 4;
450
451            return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
452          }
453        case OpCodes.Call: {
454            // evaluate sub-trees
455            double[] argValues = new double[currentInstr.nArguments];
456            for (int i = 0; i < currentInstr.nArguments; i++) {
457              argValues[i] = Evaluate(dataset, ref row, state);
458            }
459            // push on argument values on stack
460            state.CreateStackFrame(argValues);
461
462            // save the pc
463            int savedPc = state.ProgramCounter;
464            // set pc to start of function 
465            state.ProgramCounter = (ushort)currentInstr.data;
466            // evaluate the function
467            double v = Evaluate(dataset, ref row, state);
468
469            // delete the stack frame
470            state.RemoveStackFrame();
471
472            // restore the pc => evaluation will continue at point after my subtrees 
473            state.ProgramCounter = savedPc;
474            return v;
475          }
476        case OpCodes.Arg: {
477            return state.GetStackFrameValue((ushort)currentInstr.data);
478          }
479        case OpCodes.Variable: {
480            if (row < 0 || row >= dataset.Rows) return double.NaN;
481            var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
482            return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight;
483          }
484        case OpCodes.BinaryFactorVariable: {
485            if (row < 0 || row >= dataset.Rows) return double.NaN;
486            var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
487            return ((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0;
488          }
489        case OpCodes.FactorVariable: {
490            if (row < 0 || row >= dataset.Rows) return double.NaN;
491            var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
492            return factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]);
493          }
494        case OpCodes.LagVariable: {
495            var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
496            int actualRow = row + laggedVariableTreeNode.Lag;
497            if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; }
498            return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight;
499          }
500        case OpCodes.Constant: {
501            var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
502            return constTreeNode.Value;
503          }
504
505        //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
506        //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
507        case OpCodes.VariableCondition: {
508            if (row < 0 || row >= dataset.Rows) return double.NaN;
509            var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
510            if (!variableConditionTreeNode.Symbol.IgnoreSlope) {
511              double variableValue = ((IList<double>)currentInstr.data)[row];
512              double x = variableValue - variableConditionTreeNode.Threshold;
513              double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
514
515              double trueBranch = Evaluate(dataset, ref row, state);
516              double falseBranch = Evaluate(dataset, ref row, state);
517
518              return trueBranch * p + falseBranch * (1 - p);
519            } else {
520              // strict threshold
521              double variableValue = ((IList<double>)currentInstr.data)[row];
522              if (variableValue <= variableConditionTreeNode.Threshold) {
523                var left = Evaluate(dataset, ref row, state);
524                state.SkipInstructions();
525                return left;
526              } else {
527                state.SkipInstructions();
528                return Evaluate(dataset, ref row, state);
529              }
530            }
531          }
532        default:
533          throw new NotSupportedException();
534      }
535    }
536  }
537}
Note: See TracBrowser for help on using the repository browser.