[5624] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5624] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[14290] | 22 | using System;
|
---|
[5624] | 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// Represents a symbolic classification model
|
---|
| 32 | /// </summary>
|
---|
| 33 | [StorableClass]
|
---|
| 34 | [Item(Name = "SymbolicClassificationModel", Description = "Represents a symbolic classification model.")]
|
---|
[9587] | 35 | public abstract class SymbolicClassificationModel : SymbolicDataAnalysisModel, ISymbolicClassificationModel {
|
---|
[13921] | 36 | [Storable]
|
---|
[14290] | 37 | private string targetVariable;
|
---|
[13921] | 38 | public string TargetVariable {
|
---|
| 39 | get { return targetVariable; }
|
---|
[14290] | 40 | set {
|
---|
| 41 | if (string.IsNullOrEmpty(value) || targetVariable == value) return;
|
---|
| 42 | targetVariable = value;
|
---|
| 43 | OnTargetVariableChanged(this, EventArgs.Empty);
|
---|
| 44 | }
|
---|
[13921] | 45 | }
|
---|
[8594] | 46 |
|
---|
[5624] | 47 | [StorableConstructor]
|
---|
[14289] | 48 | protected SymbolicClassificationModel(bool deserializing)
|
---|
| 49 | : base(deserializing) {
|
---|
| 50 | targetVariable = string.Empty;
|
---|
| 51 | }
|
---|
[13921] | 52 |
|
---|
[13941] | 53 | protected SymbolicClassificationModel(SymbolicClassificationModel original, Cloner cloner)
|
---|
| 54 | : base(original, cloner) {
|
---|
[13921] | 55 | targetVariable = original.targetVariable;
|
---|
| 56 | }
|
---|
| 57 |
|
---|
[13941] | 58 | protected SymbolicClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
[13921] | 59 | : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
|
---|
| 60 | this.targetVariable = targetVariable;
|
---|
| 61 | }
|
---|
[5624] | 62 |
|
---|
[12509] | 63 | public abstract IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows);
|
---|
[8594] | 64 | public abstract void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows);
|
---|
| 65 |
|
---|
| 66 | public abstract ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData);
|
---|
| 67 |
|
---|
| 68 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 69 | return CreateClassificationSolution(problemData);
|
---|
[5624] | 70 | }
|
---|
[8972] | 71 |
|
---|
| 72 | public void Scale(IClassificationProblemData problemData) {
|
---|
| 73 | Scale(problemData, problemData.TargetVariable);
|
---|
| 74 | }
|
---|
[14290] | 75 |
|
---|
[16243] | 76 | public virtual bool IsProblemDataCompatible(IClassificationProblemData problemData, out string errorMessage) {
|
---|
| 77 | return ClassificationModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
| 81 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
| 82 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 83 | if (classificationProblemData == null)
|
---|
| 84 | throw new ArgumentException("The problem data is not a regression problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
| 85 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
[14290] | 88 | #region events
|
---|
| 89 | public event EventHandler TargetVariableChanged;
|
---|
| 90 | private void OnTargetVariableChanged(object sender, EventArgs args) {
|
---|
| 91 | var changed = TargetVariableChanged;
|
---|
| 92 | if (changed != null)
|
---|
| 93 | changed(sender, args);
|
---|
| 94 | }
|
---|
| 95 | #endregion
|
---|
[5624] | 96 | }
|
---|
| 97 | }
|
---|