Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Analysis/3.3/Statistics/Fitting/ExpFitting.cs

Last change on this file was 17931, checked in by gkronber, 4 years ago

#3117: update alglib to version 3.17

File size: 2.9 KB
RevLine 
[9706]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[9706]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24
25namespace HeuristicLab.Analysis.Statistics {
26  public class ExpFitting : IFitting {
[11914]27    private void ExpFunc(double[] c, double[] x, ref double func, object obj) {
[9706]28      func = Math.Exp(-c[0] * Math.Pow(x[0], 2));
29    }
30
31    private double[] GetDefaultXValues(int n) {
32      var stdX = Enumerable.Range(1, n).Select(x => (double)x).ToArray();
33      return stdX;
34    }
35
[11914]36    public void Calculate(double[] dataPoints, out double p0) {
[9706]37      var stdX = GetDefaultXValues(dataPoints.Count());
[11914]38      Calculate(dataPoints, stdX, out p0);
[9706]39    }
40
[11914]41    public void Calculate(double[] y, double[] x, out double p0) {
[9706]42      if (y.Count() != x.Count()) {
[17931]43        throw new ArgumentException("The length of x and y needs do be equal. ");
[9706]44      }
45
46      double[] c = new double[] { 0.3 };
47      double epsx = 0.000001;
48      int maxits = 0;
49      int info;
50      alglib.lsfitstate state;
51      alglib.lsfitreport rep;
52      double diffstep = 0.0001;
53      double[,] xx = new double[x.Count(), 1];
54
55      for (int i = 0; i < x.Count(); i++) {
56        xx[i, 0] = x[i];
57      }
58
59      alglib.lsfitcreatef(xx, y, c, diffstep, out state);
[17931]60      alglib.lsfitsetcond(state, epsx, maxits);
[11914]61      alglib.lsfitfit(state, ExpFunc, null, null);
[9706]62      alglib.lsfitresults(state, out info, out c, out rep);
63
64      p0 = c[0];
65    }
66
[11914]67    public DataRow CalculateFittedLine(double[] dataPoints) {
68      DataRow newRow = new DataRow();
69      double c0;
70      Calculate(dataPoints, out c0);
[9706]71      var stdX = GetDefaultXValues(dataPoints.Count());
72
73      for (int i = 0; i < stdX.Count(); i++) {
74        newRow.Values.Add(Math.Exp(-c0 * Math.Pow(stdX[i], 2)));
75      }
76
77      return newRow;
78    }
79
[11914]80    public DataRow CalculateFittedLine(double[] y, double[] x) {
81      DataRow newRow = new DataRow();
82      double c0;
83      Calculate(y, x, out c0);
[9706]84
85      for (int i = 0; i < x.Count(); i++) {
86        newRow.Values.Add(Math.Exp(-c0 * Math.Pow(x[i], 2)));
87      }
88
89      return newRow;
90    }
91
92    public override string ToString() {
93      return "Exponential Fitting";
94    }
95  }
96}
Note: See TracBrowser for help on using the repository browser.