1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
33 | [StorableType("55412E08-DAD4-4C2E-9181-C142E7EA9474")]
|
---|
34 | [Item("RandomForestModelFull", "Represents a random forest for regression and classification.")]
|
---|
35 | public sealed class RandomForestModelFull : ClassificationModel, IRandomForestModel {
|
---|
36 |
|
---|
37 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
38 | get { return inputVariables; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [Storable]
|
---|
42 | private double[] classValues;
|
---|
43 |
|
---|
44 | public int NumClasses => classValues == null ? 0 : classValues.Length;
|
---|
45 |
|
---|
46 | [Storable]
|
---|
47 | private string[] inputVariables;
|
---|
48 |
|
---|
49 | [Storable]
|
---|
50 | public int NumberOfTrees {
|
---|
51 | get; private set;
|
---|
52 | }
|
---|
53 |
|
---|
54 | // not persisted
|
---|
55 | private alglib.decisionforest randomForest;
|
---|
56 |
|
---|
57 | [Storable]
|
---|
58 | private string RandomForestSerialized {
|
---|
59 | get { alglib.dfserialize(randomForest, out var serialized); return serialized; }
|
---|
60 | set { if (value != null) alglib.dfunserialize(value, out randomForest); }
|
---|
61 | }
|
---|
62 |
|
---|
63 | [StorableConstructor]
|
---|
64 | private RandomForestModelFull(StorableConstructorFlag _) : base(_) { }
|
---|
65 |
|
---|
66 | private RandomForestModelFull(RandomForestModelFull original, Cloner cloner) : base(original, cloner) {
|
---|
67 | if (original.randomForest != null)
|
---|
68 | randomForest = (alglib.decisionforest)original.randomForest.make_copy();
|
---|
69 | NumberOfTrees = original.NumberOfTrees;
|
---|
70 |
|
---|
71 | // following fields are immutable so we don't need to clone them
|
---|
72 | inputVariables = original.inputVariables;
|
---|
73 | classValues = original.classValues;
|
---|
74 | }
|
---|
75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
76 | return new RandomForestModelFull(this, cloner);
|
---|
77 | }
|
---|
78 |
|
---|
79 | public RandomForestModelFull(alglib.decisionforest decisionForest, int nTrees, string targetVariable, IEnumerable<string> inputVariables, IEnumerable<double> classValues = null) : base(targetVariable) {
|
---|
80 | this.name = ItemName;
|
---|
81 | this.description = ItemDescription;
|
---|
82 |
|
---|
83 | randomForest = (alglib.decisionforest)decisionForest.make_copy();
|
---|
84 | NumberOfTrees = nTrees;
|
---|
85 |
|
---|
86 | this.inputVariables = inputVariables.ToArray();
|
---|
87 |
|
---|
88 | //classValues are only use for classification models
|
---|
89 | if (classValues == null) this.classValues = new double[0];
|
---|
90 | else this.classValues = classValues.ToArray();
|
---|
91 | }
|
---|
92 |
|
---|
93 |
|
---|
94 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
95 | return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
96 | }
|
---|
97 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
98 | return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
99 | }
|
---|
100 |
|
---|
101 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
102 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
103 | }
|
---|
104 |
|
---|
105 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
106 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
107 |
|
---|
108 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
109 | if (regressionProblemData != null)
|
---|
110 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
111 |
|
---|
112 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
113 | if (classificationProblemData != null)
|
---|
114 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
115 |
|
---|
116 | throw new ArgumentException("The problem data is not compatible with this random forest. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
117 | }
|
---|
118 |
|
---|
119 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
120 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
121 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
122 |
|
---|
123 | int n = inputData.GetLength(0);
|
---|
124 | int columns = inputData.GetLength(1);
|
---|
125 | double[] x = new double[columns];
|
---|
126 | double[] y = new double[1];
|
---|
127 |
|
---|
128 | alglib.dfcreatebuffer(randomForest, out var buf);
|
---|
129 | for (int row = 0; row < n; row++) {
|
---|
130 | for (int column = 0; column < columns; column++) {
|
---|
131 | x[column] = inputData[row, column];
|
---|
132 | }
|
---|
133 | alglib.dftsprocess(randomForest, buf, x, ref y); // thread-safe process (as long as separate buffers are used)
|
---|
134 | yield return y[0];
|
---|
135 | }
|
---|
136 | }
|
---|
137 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
138 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
139 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
140 |
|
---|
141 | int n = inputData.GetLength(0);
|
---|
142 | int columns = inputData.GetLength(1);
|
---|
143 | double[] x = new double[columns];
|
---|
144 | double[] ys = new double[this.randomForest.innerobj.ntrees];
|
---|
145 |
|
---|
146 | for (int row = 0; row < n; row++) {
|
---|
147 | for (int column = 0; column < columns; column++) {
|
---|
148 | x[column] = inputData[row, column];
|
---|
149 | }
|
---|
150 | lock (randomForest)
|
---|
151 | alglib.dforest.dfprocessraw(randomForest.innerobj, x, ref ys, null);
|
---|
152 | yield return ys.VariancePop();
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
157 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
158 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
159 |
|
---|
160 | int n = inputData.GetLength(0);
|
---|
161 | int columns = inputData.GetLength(1);
|
---|
162 | double[] x = new double[columns];
|
---|
163 | double[] y = new double[NumClasses];
|
---|
164 |
|
---|
165 | alglib.dfcreatebuffer(randomForest, out var buf);
|
---|
166 | for (int row = 0; row < n; row++) {
|
---|
167 | for (int column = 0; column < columns; column++) {
|
---|
168 | x[column] = inputData[row, column];
|
---|
169 | }
|
---|
170 | alglib.dftsprocess(randomForest, buf, x, ref y);
|
---|
171 | // find class for with the largest probability value
|
---|
172 | int maxProbClassIndex = 0;
|
---|
173 | double maxProb = y[0];
|
---|
174 | for (int i = 1; i < y.Length; i++) {
|
---|
175 | if (maxProb < y[i]) {
|
---|
176 | maxProb = y[i];
|
---|
177 | maxProbClassIndex = i;
|
---|
178 | }
|
---|
179 | }
|
---|
180 | yield return classValues[maxProbClassIndex];
|
---|
181 | }
|
---|
182 | }
|
---|
183 |
|
---|
184 | public ISymbolicExpressionTree ExtractTree(int treeIdx) {
|
---|
185 | var rf = randomForest;
|
---|
186 | // hoping that the internal representation of alglib is stable
|
---|
187 |
|
---|
188 | // TREE FORMAT
|
---|
189 | // W[Offs] - size of sub-array (for the tree)
|
---|
190 | // node info:
|
---|
191 | // W[K+0] - variable number (-1 for leaf mode)
|
---|
192 | // W[K+1] - threshold (class/value for leaf node)
|
---|
193 | // W[K+2] - ">=" branch index (absent for leaf node)
|
---|
194 |
|
---|
195 | // skip irrelevant trees
|
---|
196 | int offset = 0;
|
---|
197 | for (int i = 0; i < treeIdx - 1; i++) {
|
---|
198 | offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
|
---|
199 | }
|
---|
200 |
|
---|
201 | var constSy = new Constant();
|
---|
202 | var varCondSy = new VariableCondition() { IgnoreSlope = true };
|
---|
203 |
|
---|
204 | var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
|
---|
205 |
|
---|
206 | var startNode = new StartSymbol().CreateTreeNode();
|
---|
207 | startNode.AddSubtree(node);
|
---|
208 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
209 | root.AddSubtree(startNode);
|
---|
210 | return new SymbolicExpressionTree(root);
|
---|
211 | }
|
---|
212 |
|
---|
213 | private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
|
---|
214 |
|
---|
215 | // alglib source for evaluation of one tree (dfprocessinternal)
|
---|
216 | // offs = 0
|
---|
217 | //
|
---|
218 | // Set pointer to the root
|
---|
219 | //
|
---|
220 | // k = offs + 1;
|
---|
221 | //
|
---|
222 | // //
|
---|
223 | // // Navigate through the tree
|
---|
224 | // //
|
---|
225 | // while (true) {
|
---|
226 | // if ((double)(df.trees[k]) == (double)(-1)) {
|
---|
227 | // if (df.nclasses == 1) {
|
---|
228 | // y[0] = y[0] + df.trees[k + 1];
|
---|
229 | // } else {
|
---|
230 | // idx = (int)Math.Round(df.trees[k + 1]);
|
---|
231 | // y[idx] = y[idx] + 1;
|
---|
232 | // }
|
---|
233 | // break;
|
---|
234 | // }
|
---|
235 | // if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
|
---|
236 | // k = k + innernodewidth;
|
---|
237 | // } else {
|
---|
238 | // k = offs + (int)Math.Round(df.trees[k + 2]);
|
---|
239 | // }
|
---|
240 | // }
|
---|
241 |
|
---|
242 | if ((double)(trees[k]) == (double)(-1)) {
|
---|
243 | var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
|
---|
244 | constNode.Value = trees[k + 1];
|
---|
245 | return constNode;
|
---|
246 | } else {
|
---|
247 | var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
|
---|
248 | condNode.VariableName = inputVariables[(int)Math.Round(trees[k])];
|
---|
249 | condNode.Threshold = trees[k + 1];
|
---|
250 | condNode.Slope = double.PositiveInfinity;
|
---|
251 |
|
---|
252 | var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
|
---|
253 | var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
|
---|
254 |
|
---|
255 | condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
|
---|
256 | condNode.AddSubtree(right);
|
---|
257 | return condNode;
|
---|
258 | }
|
---|
259 | }
|
---|
260 | }
|
---|
261 | } |
---|