Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs @ 18066

Last change on this file since 18066 was 17931, checked in by gkronber, 4 years ago

#3117: update alglib to version 3.17

File size: 18.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22extern alias alglib_3_7;
23
24using System;
25using System.Collections.Generic;
26using System.Linq;
27using HEAL.Attic;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33
34namespace HeuristicLab.Algorithms.DataAnalysis {
35  /// <summary>
36  /// Represents a random forest model for regression and classification
37  /// </summary>
38  [Obsolete("This class only exists for backwards compatibility reasons for stored models with the XML Persistence. Use RFModelSurrogate or RFModelFull instead.")]
39  [StorableType("9AA4CCC2-CD75-4471-8DF6-949E5B783642")]
40  [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
41  public sealed class RandomForestModel : ClassificationModel, IRandomForestModel {
42    // not persisted
43    private alglib_3_7.alglib.decisionforest randomForest;
44    private alglib_3_7.alglib.decisionforest RandomForest {
45      get {
46        // recalculate lazily
47        if (randomForest.innerobj.trees == null || randomForest.innerobj.trees.Length == 0) RecalculateModel();
48        return randomForest;
49      }
50    }
51
52    public override IEnumerable<string> VariablesUsedForPrediction {
53      get { return originalTrainingData.AllowedInputVariables; }
54    }
55
56    public int NumberOfTrees {
57      get { return nTrees; }
58    }
59
60    // instead of storing the data of the model itself
61    // we instead only store data necessary to recalculate the same model lazily on demand
62    [Storable]
63    private int seed;
64    [Storable]
65    private IDataAnalysisProblemData originalTrainingData;
66    [Storable]
67    private double[] classValues;
68    [Storable]
69    private int nTrees;
70    [Storable]
71    private double r;
72    [Storable]
73    private double m;
74
75    [StorableConstructor]
76    private RandomForestModel(StorableConstructorFlag _) : base(_) {
77      // for backwards compatibility (loading old solutions)
78      randomForest = new alglib_3_7.alglib.decisionforest();
79    }
80    private RandomForestModel(RandomForestModel original, Cloner cloner)
81      : base(original, cloner) {
82      randomForest = new alglib_3_7.alglib.decisionforest();
83      randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
84      randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
85      randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
86      randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
87      // we assume that the trees array (double[]) is immutable in alglib
88      randomForest.innerobj.trees = original.randomForest.innerobj.trees;
89
90      // allowedInputVariables is immutable so we don't need to clone
91      allowedInputVariables = original.allowedInputVariables;
92
93      // clone data which is necessary to rebuild the model
94      this.seed = original.seed;
95      this.originalTrainingData = cloner.Clone(original.originalTrainingData);
96      // classvalues is immutable so we don't need to clone
97      this.classValues = original.classValues;
98      this.nTrees = original.nTrees;
99      this.r = original.r;
100      this.m = original.m;
101    }
102
103    // random forest models can only be created through the static factory methods CreateRegressionModel and CreateClassificationModel
104    private RandomForestModel(string targetVariable, alglib_3_7.alglib.decisionforest randomForest,
105      int seed, IDataAnalysisProblemData originalTrainingData,
106      int nTrees, double r, double m, double[] classValues = null)
107      : base(targetVariable) {
108      this.name = ItemName;
109      this.description = ItemDescription;
110      // the model itself
111      this.randomForest = randomForest;
112      // data which is necessary for recalculation of the model
113      this.seed = seed;
114      this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
115      this.classValues = classValues;
116      this.nTrees = nTrees;
117      this.r = r;
118      this.m = m;
119    }
120
121    public override IDeepCloneable Clone(Cloner cloner) {
122      return new RandomForestModel(this, cloner);
123    }
124
125    private void RecalculateModel() {
126      double rmsError, oobRmsError, relClassError, oobRelClassError;
127      var regressionProblemData = originalTrainingData as IRegressionProblemData;
128      var classificationProblemData = originalTrainingData as IClassificationProblemData;
129      if (regressionProblemData != null) {
130        var model = CreateRegressionModel(regressionProblemData,
131                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
132                                              out relClassError, out oobRelClassError);
133        randomForest = model.randomForest;
134      } else if (classificationProblemData != null) {
135        var model = CreateClassificationModel(classificationProblemData,
136                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
137                                              out relClassError, out oobRelClassError);
138        randomForest = model.randomForest;
139      }
140    }
141
142    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
143      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
144      RandomForestUtil.AssertInputMatrix(inputData);
145
146      int n = inputData.GetLength(0);
147      int columns = inputData.GetLength(1);
148      double[] x = new double[columns];
149      double[] y = new double[1];
150
151      for (int row = 0; row < n; row++) {
152        for (int column = 0; column < columns; column++) {
153          x[column] = inputData[row, column];
154        }
155        alglib_3_7.alglib.dfprocess(RandomForest, x, ref y);
156        yield return y[0];
157      }
158    }
159
160    public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
161      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
162      RandomForestUtil.AssertInputMatrix(inputData);
163
164      int n = inputData.GetLength(0);
165      int columns = inputData.GetLength(1);
166      double[] x = new double[columns];
167      double[] ys = new double[this.RandomForest.innerobj.ntrees];
168
169      for (int row = 0; row < n; row++) {
170        for (int column = 0; column < columns; column++) {
171          x[column] = inputData[row, column];
172        }
173        alglib_3_7.alglib.dforest.dfprocessraw(RandomForest.innerobj, x, ref ys);
174        yield return ys.VariancePop();
175      }
176    }
177
178    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
179      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
180      RandomForestUtil.AssertInputMatrix(inputData);
181
182      int n = inputData.GetLength(0);
183      int columns = inputData.GetLength(1);
184      double[] x = new double[columns];
185      double[] y = new double[RandomForest.innerobj.nclasses];
186
187      for (int row = 0; row < n; row++) {
188        for (int column = 0; column < columns; column++) {
189          x[column] = inputData[row, column];
190        }
191        alglib_3_7.alglib.dfprocess(randomForest, x, ref y);
192        // find class for with the largest probability value
193        int maxProbClassIndex = 0;
194        double maxProb = y[0];
195        for (int i = 1; i < y.Length; i++) {
196          if (maxProb < y[i]) {
197            maxProb = y[i];
198            maxProbClassIndex = i;
199          }
200        }
201        yield return classValues[maxProbClassIndex];
202      }
203    }
204
205    public ISymbolicExpressionTree ExtractTree(int treeIdx) {
206      var rf = RandomForest;
207      // hoping that the internal representation of alglib is stable
208
209      // TREE FORMAT
210      // W[Offs]      -   size of sub-array (for the tree)
211      //     node info:
212      // W[K+0]       -   variable number        (-1 for leaf mode)
213      // W[K+1]       -   threshold              (class/value for leaf node)
214      // W[K+2]       -   ">=" branch index      (absent for leaf node)
215
216      // skip irrelevant trees
217      int offset = 0;
218      for (int i = 0; i < treeIdx - 1; i++) {
219        offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
220      }
221
222      var constSy = new Constant();
223      var varCondSy = new VariableCondition() { IgnoreSlope = true };
224
225      var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
226
227      var startNode = new StartSymbol().CreateTreeNode();
228      startNode.AddSubtree(node);
229      var root = new ProgramRootSymbol().CreateTreeNode();
230      root.AddSubtree(startNode);
231      return new SymbolicExpressionTree(root);
232    }
233
234    private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
235
236      // alglib source for evaluation of one tree (dfprocessinternal)
237      // offs = 0
238      //
239      // Set pointer to the root
240      //
241      // k = offs + 1;
242      //
243      // //
244      // // Navigate through the tree
245      // //
246      // while (true) {
247      //   if ((double)(df.trees[k]) == (double)(-1)) {
248      //     if (df.nclasses == 1) {
249      //       y[0] = y[0] + df.trees[k + 1];
250      //     } else {
251      //       idx = (int)Math.Round(df.trees[k + 1]);
252      //       y[idx] = y[idx] + 1;
253      //     }
254      //     break;
255      //   }
256      //   if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
257      //     k = k + innernodewidth;
258      //   } else {
259      //     k = offs + (int)Math.Round(df.trees[k + 2]);
260      //   }
261      // }
262
263      if ((double)(trees[k]) == (double)(-1)) {
264        var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
265        constNode.Value = trees[k + 1];
266        return constNode;
267      } else {
268        var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
269        condNode.VariableName = AllowedInputVariables[(int)Math.Round(trees[k])];
270        condNode.Threshold = trees[k + 1];
271        condNode.Slope = double.PositiveInfinity;
272
273        var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
274        var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
275
276        condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
277        condNode.AddSubtree(right);
278        return condNode;
279      }
280    }
281
282
283    public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
284      return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
285    }
286    public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
287      return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
288    }
289
290    public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
291      return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
292    }
293
294    public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
295      if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
296
297      var regressionProblemData = problemData as IRegressionProblemData;
298      if (regressionProblemData != null)
299        return IsProblemDataCompatible(regressionProblemData, out errorMessage);
300
301      var classificationProblemData = problemData as IClassificationProblemData;
302      if (classificationProblemData != null)
303        return IsProblemDataCompatible(classificationProblemData, out errorMessage);
304
305      throw new ArgumentException("The problem data is not compatible with this random forest. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
306    }
307
308    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed,
309      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
310      return CreateRegressionModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
311       rmsError: out rmsError, outOfBagRmsError: out outOfBagRmsError, avgRelError: out avgRelError, outOfBagAvgRelError: out outOfBagAvgRelError);
312    }
313
314    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
315      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
316      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
317      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
318
319      var dForest = RandomForestUtil.CreateRandomForestModelAlglib_3_7(seed, inputMatrix, nTrees, r, m, 1, out var rep);
320
321      rmsError = rep.rmserror;
322      outOfBagRmsError = rep.oobrmserror;
323      avgRelError = rep.avgrelerror;
324      outOfBagAvgRelError = rep.oobavgrelerror;
325
326      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m);
327    }
328
329    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed,
330      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
331      return CreateClassificationModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
332        out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError);
333    }
334
335    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
336      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
337
338      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
339      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
340
341      var classValues = problemData.ClassValues.ToArray();
342      int nClasses = classValues.Length;
343
344      // map original class values to values [0..nClasses-1]
345      var classIndices = new Dictionary<double, double>();
346      for (int i = 0; i < nClasses; i++) {
347        classIndices[classValues[i]] = i;
348      }
349
350      int nRows = inputMatrix.GetLength(0);
351      int nColumns = inputMatrix.GetLength(1);
352      for (int row = 0; row < nRows; row++) {
353        inputMatrix[row, nColumns - 1] = classIndices[inputMatrix[row, nColumns - 1]];
354      }
355
356      var dForest = RandomForestUtil.CreateRandomForestModelAlglib_3_7(seed, inputMatrix, nTrees, r, m, nClasses, out var rep);
357
358      rmsError = rep.rmserror;
359      outOfBagRmsError = rep.oobrmserror;
360      relClassificationError = rep.relclserror;
361      outOfBagRelClassificationError = rep.oobrelclserror;
362
363      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m, classValues);
364    }
365
366    #region persistence for backwards compatibility
367    // when the originalTrainingData is null this means the model was loaded from an old file
368    // therefore, we cannot use the new persistence mechanism because the original data is not available anymore
369    // in such cases we still store the compete model
370    private bool IsCompatibilityLoaded { get { return originalTrainingData == null; } }
371
372    private string[] allowedInputVariables;
373    [Storable(Name = "allowedInputVariables")]
374    private string[] AllowedInputVariables {
375      get {
376        if (IsCompatibilityLoaded) return allowedInputVariables;
377        else return originalTrainingData.AllowedInputVariables.ToArray();
378      }
379      set { allowedInputVariables = value; }
380    }
381    [Storable]
382    private int RandomForestBufSize {
383      get {
384        if (IsCompatibilityLoaded) return randomForest.innerobj.bufsize;
385        else return 0;
386      }
387      set {
388        randomForest.innerobj.bufsize = value;
389      }
390    }
391    [Storable]
392    private int RandomForestNClasses {
393      get {
394        if (IsCompatibilityLoaded) return randomForest.innerobj.nclasses;
395        else return 0;
396      }
397      set {
398        randomForest.innerobj.nclasses = value;
399      }
400    }
401    [Storable]
402    private int RandomForestNTrees {
403      get {
404        if (IsCompatibilityLoaded) return randomForest.innerobj.ntrees;
405        else return 0;
406      }
407      set {
408        randomForest.innerobj.ntrees = value;
409      }
410    }
411    [Storable]
412    private int RandomForestNVars {
413      get {
414        if (IsCompatibilityLoaded) return randomForest.innerobj.nvars;
415        else return 0;
416      }
417      set {
418        randomForest.innerobj.nvars = value;
419      }
420    }
421    [Storable]
422    private double[] RandomForestTrees {
423      get {
424        if (IsCompatibilityLoaded) return randomForest.innerobj.trees;
425        else return new double[] { };
426      }
427      set {
428        randomForest.innerobj.trees = value;
429      }
430    }
431    #endregion
432  }
433}
Note: See TracBrowser for help on using the repository browser.