Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs @ 16654

Last change on this file since 16654 was 16565, checked in by gkronber, 6 years ago

#2520: merged changes from PersistenceOverhaul branch (r16451:16564) into trunk

File size: 19.3 KB
RevLine 
[6240]1#region License Information
2/* HeuristicLab
[16565]3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[6240]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
[14345]27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[16565]28using HEAL.Attic;
[6240]29using HeuristicLab.Problems.DataAnalysis;
[14345]30using HeuristicLab.Problems.DataAnalysis.Symbolic;
[6240]31
32namespace HeuristicLab.Algorithms.DataAnalysis {
33  /// <summary>
[6241]34  /// Represents a random forest model for regression and classification
[6240]35  /// </summary>
[16565]36  [StorableType("A4F688CD-1F42-4103-8449-7DE52AEF6C69")]
[6241]37  [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
[13941]38  public sealed class RandomForestModel : ClassificationModel, IRandomForestModel {
[10963]39    // not persisted
[6240]40    private alglib.decisionforest randomForest;
[10963]41    private alglib.decisionforest RandomForest {
42      get {
43        // recalculate lazily
44        if (randomForest.innerobj.trees == null || randomForest.innerobj.trees.Length == 0) RecalculateModel();
45        return randomForest;
[6240]46      }
47    }
48
[13941]49    public override IEnumerable<string> VariablesUsedForPrediction {
[13921]50      get { return originalTrainingData.AllowedInputVariables; }
51    }
52
[14345]53    public int NumberOfTrees {
54      get { return nTrees; }
55    }
[13921]56
[10963]57    // instead of storing the data of the model itself
58    // we instead only store data necessary to recalculate the same model lazily on demand
[6240]59    [Storable]
[10963]60    private int seed;
[6240]61    [Storable]
[10963]62    private IDataAnalysisProblemData originalTrainingData;
[6241]63    [Storable]
64    private double[] classValues;
[10963]65    [Storable]
66    private int nTrees;
67    [Storable]
68    private double r;
69    [Storable]
70    private double m;
71
[6240]72    [StorableConstructor]
[16565]73    private RandomForestModel(StorableConstructorFlag _) : base(_) {
[10963]74      // for backwards compatibility (loading old solutions)
75      randomForest = new alglib.decisionforest();
[6240]76    }
[6241]77    private RandomForestModel(RandomForestModel original, Cloner cloner)
[6240]78      : base(original, cloner) {
79      randomForest = new alglib.decisionforest();
80      randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
81      randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
82      randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
83      randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
[10963]84      // we assume that the trees array (double[]) is immutable in alglib
85      randomForest.innerobj.trees = original.randomForest.innerobj.trees;
[11315]86
[10963]87      // allowedInputVariables is immutable so we don't need to clone
88      allowedInputVariables = original.allowedInputVariables;
89
90      // clone data which is necessary to rebuild the model
91      this.seed = original.seed;
92      this.originalTrainingData = cloner.Clone(original.originalTrainingData);
93      // classvalues is immutable so we don't need to clone
94      this.classValues = original.classValues;
95      this.nTrees = original.nTrees;
96      this.r = original.r;
97      this.m = original.m;
[6240]98    }
[10963]99
100    // random forest models can only be created through the static factory methods CreateRegressionModel and CreateClassificationModel
[13941]101    private RandomForestModel(string targetVariable, alglib.decisionforest randomForest,
[10963]102      int seed, IDataAnalysisProblemData originalTrainingData,
103      int nTrees, double r, double m, double[] classValues = null)
[13941]104      : base(targetVariable) {
[6240]105      this.name = ItemName;
106      this.description = ItemDescription;
[10963]107      // the model itself
[6240]108      this.randomForest = randomForest;
[10963]109      // data which is necessary for recalculation of the model
110      this.seed = seed;
111      this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
112      this.classValues = classValues;
113      this.nTrees = nTrees;
114      this.r = r;
115      this.m = m;
[6240]116    }
117
118    public override IDeepCloneable Clone(Cloner cloner) {
[6241]119      return new RandomForestModel(this, cloner);
[6240]120    }
121
[10963]122    private void RecalculateModel() {
123      double rmsError, oobRmsError, relClassError, oobRelClassError;
124      var regressionProblemData = originalTrainingData as IRegressionProblemData;
125      var classificationProblemData = originalTrainingData as IClassificationProblemData;
126      if (regressionProblemData != null) {
127        var model = CreateRegressionModel(regressionProblemData,
128                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
129                                              out relClassError, out oobRelClassError);
130        randomForest = model.randomForest;
131      } else if (classificationProblemData != null) {
132        var model = CreateClassificationModel(classificationProblemData,
133                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
134                                              out relClassError, out oobRelClassError);
135        randomForest = model.randomForest;
136      }
137    }
138
[12509]139    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
[14843]140      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[10963]141      AssertInputMatrix(inputData);
[6240]142
143      int n = inputData.GetLength(0);
144      int columns = inputData.GetLength(1);
145      double[] x = new double[columns];
146      double[] y = new double[1];
147
148      for (int row = 0; row < n; row++) {
149        for (int column = 0; column < columns; column++) {
150          x[column] = inputData[row, column];
151        }
[10963]152        alglib.dfprocess(RandomForest, x, ref y);
[6240]153        yield return y[0];
154      }
155    }
156
[14107]157    public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
[14843]158      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[14107]159      AssertInputMatrix(inputData);
160
161      int n = inputData.GetLength(0);
162      int columns = inputData.GetLength(1);
163      double[] x = new double[columns];
[14230]164      double[] ys = new double[this.RandomForest.innerobj.ntrees];
[14107]165
166      for (int row = 0; row < n; row++) {
167        for (int column = 0; column < columns; column++) {
168          x[column] = inputData[row, column];
169        }
170        alglib.dforest.dfprocessraw(RandomForest.innerobj, x, ref ys);
171        yield return ys.VariancePop();
172      }
173    }
174
[13941]175    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
[14843]176      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[10963]177      AssertInputMatrix(inputData);
[6241]178
179      int n = inputData.GetLength(0);
180      int columns = inputData.GetLength(1);
181      double[] x = new double[columns];
[10963]182      double[] y = new double[RandomForest.innerobj.nclasses];
[6241]183
184      for (int row = 0; row < n; row++) {
185        for (int column = 0; column < columns; column++) {
186          x[column] = inputData[row, column];
187        }
188        alglib.dfprocess(randomForest, x, ref y);
189        // find class for with the largest probability value
190        int maxProbClassIndex = 0;
191        double maxProb = y[0];
192        for (int i = 1; i < y.Length; i++) {
193          if (maxProb < y[i]) {
194            maxProb = y[i];
195            maxProbClassIndex = i;
196          }
197        }
198        yield return classValues[maxProbClassIndex];
199      }
200    }
201
[14345]202    public ISymbolicExpressionTree ExtractTree(int treeIdx) {
[14368]203      var rf = RandomForest;
[14345]204      // hoping that the internal representation of alglib is stable
[13941]205
[14345]206      // TREE FORMAT
207      // W[Offs]      -   size of sub-array (for the tree)
208      //     node info:
209      // W[K+0]       -   variable number        (-1 for leaf mode)
210      // W[K+1]       -   threshold              (class/value for leaf node)
211      // W[K+2]       -   ">=" branch index      (absent for leaf node)
212
213      // skip irrelevant trees
214      int offset = 0;
215      for (int i = 0; i < treeIdx - 1; i++) {
[14368]216        offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
[14345]217      }
218
219      var constSy = new Constant();
220      var varCondSy = new VariableCondition() { IgnoreSlope = true };
221
[14368]222      var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
[14345]223
224      var startNode = new StartSymbol().CreateTreeNode();
225      startNode.AddSubtree(node);
226      var root = new ProgramRootSymbol().CreateTreeNode();
227      root.AddSubtree(startNode);
228      return new SymbolicExpressionTree(root);
229    }
230
231    private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
232
233      // alglib source for evaluation of one tree (dfprocessinternal)
234      // offs = 0
235      //
236      // Set pointer to the root
237      //
238      // k = offs + 1;
239      //
240      // //
241      // // Navigate through the tree
242      // //
243      // while (true) {
244      //   if ((double)(df.trees[k]) == (double)(-1)) {
245      //     if (df.nclasses == 1) {
246      //       y[0] = y[0] + df.trees[k + 1];
247      //     } else {
248      //       idx = (int)Math.Round(df.trees[k + 1]);
249      //       y[idx] = y[idx] + 1;
250      //     }
251      //     break;
252      //   }
253      //   if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
254      //     k = k + innernodewidth;
255      //   } else {
256      //     k = offs + (int)Math.Round(df.trees[k + 2]);
257      //   }
258      // }
259
260      if ((double)(trees[k]) == (double)(-1)) {
261        var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
262        constNode.Value = trees[k + 1];
263        return constNode;
264      } else {
265        var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
266        condNode.VariableName = AllowedInputVariables[(int)Math.Round(trees[k])];
267        condNode.Threshold = trees[k + 1];
268        condNode.Slope = double.PositiveInfinity;
269
270        var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
271        var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
272
273        condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
274        condNode.AddSubtree(right);
275        return condNode;
276      }
277    }
278
279
[13941]280    public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
281      return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
[6603]282    }
[13941]283    public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
284      return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
[6603]285    }
286
[16243]287    public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
288      return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
289    }
290
291    public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
292      if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
293
294      var regressionProblemData = problemData as IRegressionProblemData;
295      if (regressionProblemData != null)
296        return IsProblemDataCompatible(regressionProblemData, out errorMessage);
297
298      var classificationProblemData = problemData as IClassificationProblemData;
299      if (classificationProblemData != null)
300        return IsProblemDataCompatible(classificationProblemData, out errorMessage);
301
302      throw new ArgumentException("The problem data is not a regression nor a classification problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
303    }
304
[10963]305    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed,
[11338]306      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
[15464]307      return CreateRegressionModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
308       rmsError: out rmsError, outOfBagRmsError: out outOfBagRmsError, avgRelError: out avgRelError, outOfBagAvgRelError: out outOfBagAvgRelError);
[11315]309    }
[10963]310
[11343]311    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
312      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
[10963]313      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
[14843]314      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
[10963]315
316      alglib.dfreport rep;
317      var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, 1, out rep);
318
319      rmsError = rep.rmserror;
[15464]320      outOfBagRmsError = rep.oobrmserror;
[10963]321      avgRelError = rep.avgrelerror;
322      outOfBagAvgRelError = rep.oobavgrelerror;
323
[13941]324      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m);
[6240]325    }
326
[10963]327    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed,
328      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
[15783]329      return CreateClassificationModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
[15464]330        out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError);
[11338]331    }
[10963]332
[11343]333    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
334      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
[11338]335
[10963]336      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
[14843]337      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
[10963]338
339      var classValues = problemData.ClassValues.ToArray();
340      int nClasses = classValues.Length;
341
342      // map original class values to values [0..nClasses-1]
343      var classIndices = new Dictionary<double, double>();
344      for (int i = 0; i < nClasses; i++) {
345        classIndices[classValues[i]] = i;
346      }
347
348      int nRows = inputMatrix.GetLength(0);
349      int nColumns = inputMatrix.GetLength(1);
350      for (int row = 0; row < nRows; row++) {
351        inputMatrix[row, nColumns - 1] = classIndices[inputMatrix[row, nColumns - 1]];
352      }
353
354      alglib.dfreport rep;
355      var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, nClasses, out rep);
356
357      rmsError = rep.rmserror;
358      outOfBagRmsError = rep.oobrmserror;
359      relClassificationError = rep.relclserror;
360      outOfBagRelClassificationError = rep.oobrelclserror;
361
[13941]362      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m, classValues);
[10963]363    }
364
365    private static alglib.decisionforest CreateRandomForestModel(int seed, double[,] inputMatrix, int nTrees, double r, double m, int nClasses, out alglib.dfreport rep) {
366      AssertParameters(r, m);
367      AssertInputMatrix(inputMatrix);
368
369      int info = 0;
370      alglib.math.rndobject = new System.Random(seed);
371      var dForest = new alglib.decisionforest();
372      rep = new alglib.dfreport();
373      int nRows = inputMatrix.GetLength(0);
374      int nColumns = inputMatrix.GetLength(1);
375      int sampleSize = Math.Max((int)Math.Round(r * nRows), 1);
376      int nFeatures = Math.Max((int)Math.Round(m * (nColumns - 1)), 1);
377
378      alglib.dforest.dfbuildinternal(inputMatrix, nRows, nColumns - 1, nClasses, nTrees, sampleSize, nFeatures, alglib.dforest.dfusestrongsplits + alglib.dforest.dfuseevs, ref info, dForest.innerobj, rep.innerobj);
379      if (info != 1) throw new ArgumentException("Error in calculation of random forest model");
380      return dForest;
381    }
382
383    private static void AssertParameters(double r, double m) {
384      if (r <= 0 || r > 1) throw new ArgumentException("The R parameter for random forest modeling must be between 0 and 1.");
385      if (m <= 0 || m > 1) throw new ArgumentException("The M parameter for random forest modeling must be between 0 and 1.");
386    }
387
388    private static void AssertInputMatrix(double[,] inputMatrix) {
[15786]389      if (inputMatrix.ContainsNanOrInfinity())
[10963]390        throw new NotSupportedException("Random forest modeling does not support NaN or infinity values in the input dataset.");
391    }
392
393    #region persistence for backwards compatibility
394    // when the originalTrainingData is null this means the model was loaded from an old file
395    // therefore, we cannot use the new persistence mechanism because the original data is not available anymore
396    // in such cases we still store the compete model
397    private bool IsCompatibilityLoaded { get { return originalTrainingData == null; } }
398
399    private string[] allowedInputVariables;
400    [Storable(Name = "allowedInputVariables")]
401    private string[] AllowedInputVariables {
402      get {
403        if (IsCompatibilityLoaded) return allowedInputVariables;
404        else return originalTrainingData.AllowedInputVariables.ToArray();
405      }
406      set { allowedInputVariables = value; }
407    }
[6240]408    [Storable]
409    private int RandomForestBufSize {
410      get {
[10963]411        if (IsCompatibilityLoaded) return randomForest.innerobj.bufsize;
412        else return 0;
[6240]413      }
414      set {
415        randomForest.innerobj.bufsize = value;
416      }
417    }
418    [Storable]
419    private int RandomForestNClasses {
420      get {
[10963]421        if (IsCompatibilityLoaded) return randomForest.innerobj.nclasses;
422        else return 0;
[6240]423      }
424      set {
425        randomForest.innerobj.nclasses = value;
426      }
427    }
428    [Storable]
429    private int RandomForestNTrees {
430      get {
[10963]431        if (IsCompatibilityLoaded) return randomForest.innerobj.ntrees;
432        else return 0;
[6240]433      }
434      set {
435        randomForest.innerobj.ntrees = value;
436      }
437    }
438    [Storable]
439    private int RandomForestNVars {
440      get {
[10963]441        if (IsCompatibilityLoaded) return randomForest.innerobj.nvars;
442        else return 0;
[6240]443      }
444      set {
445        randomForest.innerobj.nvars = value;
446      }
447    }
448    [Storable]
449    private double[] RandomForestTrees {
450      get {
[10963]451        if (IsCompatibilityLoaded) return randomForest.innerobj.trees;
452        else return new double[] { };
[6240]453      }
454      set {
455        randomForest.innerobj.trees = value;
456      }
457    }
458    #endregion
459  }
460}
Note: See TracBrowser for help on using the repository browser.