1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 |
|
---|
5 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
7 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
8 | using HeuristicLab.Random;
|
---|
9 | using HeuristicLab.Scripting;
|
---|
10 |
|
---|
11 | public class RFRegressionCrossValidationScript : HeuristicLab.Scripting.CSharpScriptBase {
|
---|
12 | /* Maximum degree of parallelism (specifies whether or not the grid search should be parallelized) */
|
---|
13 | const int maximumDegreeOfParallelism = 4;
|
---|
14 | /* Number of crossvalidation folds: */
|
---|
15 | const int numberOfFolds = 3;
|
---|
16 | /* Specify whether the crossvalidation folds should be shuffled */
|
---|
17 | const bool shuffleFolds = true;
|
---|
18 |
|
---|
19 | /* The tunable Random Forest parameters:
|
---|
20 | - "n" (number of trees). In the random forests literature, this is referred to as the ntree parameter.
|
---|
21 | Larger number of trees produce more stable models and covariate importance estimates, but require more memory and a longer run time.
|
---|
22 | For small datasets, 50 trees may be sufficient. For larger datasets, 500 or more may be required. Please consult the random forests
|
---|
23 | literature for extensive discussion of this parameter (e.g. Cutler et al., 2007; Strobl et al., 2007; Strobl et al., 2008).
|
---|
24 |
|
---|
25 | - "r" The ratio of the training set that will be used in the construction of individual trees (0<r<=1). Should be adjusted depending on
|
---|
26 | the noise level in the dataset in the range from 0.66 (low noise) to 0.05 (high noise). This parameter should be adjusted to achieve
|
---|
27 | good generalization error.
|
---|
28 |
|
---|
29 | - "m" The ratio of features that will be used in the construction of individual trees (0<m<=1)
|
---|
30 | */
|
---|
31 | static Dictionary<string, IEnumerable<double>> randomForestParameterRanges = new Dictionary<string, IEnumerable<double>> {
|
---|
32 | { "N", ValueGenerator.GenerateSteps(5m, 10, 1).Select(x => Math.Pow(2,(double)x)) },
|
---|
33 | { "R", ValueGenerator.GenerateSteps(0.05m, 0.66m, 0.05m).Select(x => (double)x) },
|
---|
34 | { "M", ValueGenerator.GenerateSteps(0.1m, 1, 0.1m).Select(x => (double)x) }
|
---|
35 | };
|
---|
36 |
|
---|
37 | private static RandomForestRegressionSolution GridSearchWithCrossvalidation(IRegressionProblemData problemData, out RFParameter bestParameters, int seed = 3141519) {
|
---|
38 | double rmsError, outOfBagRmsError, avgRelError, outOfBagAvgRelError;
|
---|
39 | bestParameters = RandomForestUtil.GridSearch(problemData, numberOfFolds, shuffleFolds, randomForestParameterRanges, seed, maximumDegreeOfParallelism);
|
---|
40 | var model = RandomForestModel.CreateRegressionModel(problemData, problemData.TrainingIndices, bestParameters.N, bestParameters.R, bestParameters.M, seed, out rmsError, out outOfBagRmsError, out avgRelError, out outOfBagAvgRelError);
|
---|
41 | return (RandomForestRegressionSolution)model.CreateRegressionSolution(problemData);
|
---|
42 | }
|
---|
43 |
|
---|
44 | private static RandomForestRegressionSolution GridSearch(IRegressionProblemData problemData, out RFParameter bestParameters, int seed = 3141519) {
|
---|
45 | double rmsError, outOfBagRmsError, avgRelError, outOfBagAvgRelError;
|
---|
46 | var random = new MersenneTwister();
|
---|
47 | bestParameters = RandomForestUtil.GridSearch(problemData, randomForestParameterRanges, seed, maximumDegreeOfParallelism);
|
---|
48 | var model = RandomForestModel.CreateRegressionModel(problemData, problemData.TrainingIndices, bestParameters.N, bestParameters.R, bestParameters.M, seed,
|
---|
49 | out rmsError, out outOfBagRmsError, out avgRelError, out outOfBagAvgRelError);
|
---|
50 | return (RandomForestRegressionSolution)model.CreateRegressionSolution(problemData);
|
---|
51 | }
|
---|
52 |
|
---|
53 | public override void Main() {
|
---|
54 | var variables = (Variables)vars;
|
---|
55 | var item = variables.SingleOrDefault(x => x.Value is IRegressionProblem || x.Value is IRegressionProblemData);
|
---|
56 | if (item.Equals(default(KeyValuePair<string, object>)))
|
---|
57 | throw new ArgumentException("Could not find a suitable problem or problem data.");
|
---|
58 |
|
---|
59 | string name = item.Key;
|
---|
60 | IRegressionProblemData problemData;
|
---|
61 | if (item.Value is IRegressionProblem)
|
---|
62 | problemData = ((IRegressionProblem)item.Value).ProblemData;
|
---|
63 | else
|
---|
64 | problemData = (IRegressionProblemData)item.Value;
|
---|
65 |
|
---|
66 | var bestParameters = new RFParameter();
|
---|
67 | var bestSolution = GridSearch(problemData, out bestParameters);
|
---|
68 | vars["bestSolution"] = bestSolution;
|
---|
69 | vars["bestParameters"] = bestParameters;
|
---|
70 |
|
---|
71 | Console.WriteLine("R2 (training): " + bestSolution.TrainingRSquared + ", R2 (test): " + bestSolution.TestRSquared);
|
---|
72 | Console.WriteLine("Model parameters: n = {0}, r = {1}, m = {2}", bestParameters.N, bestParameters.R, bestParameters.M);
|
---|
73 | }
|
---|
74 | }
|
---|