Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTen.cs @ 13495

Last change on this file since 13495 was 12740, checked in by abeham, 9 years ago

#2301: merged 12292,12293 to stable

File size: 3.1 KB
RevLine 
[7860]1#region License Information
2/* HeuristicLab
[12009]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[7860]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
[12740]25using HeuristicLab.Common;
[7860]26
27namespace HeuristicLab.Problems.Instances.DataAnalysis {
[8238]28  public class KeijzerFunctionTen : ArtificialRegressionDataDescriptor {
[7860]29
[8238]30    public override string Name { get { return "Keijzer 10 f(x, y) = x ^ y"; } }
[7860]31    public override string Description {
32      get {
33        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
34        + "Authors: Maarten Keijzer" + Environment.NewLine
35        + "Function: f(x, y) = x ^ y" + Environment.NewLine
36        + "range(train): 100 Train cases x,y = rnd(0, 1)" + Environment.NewLine
37        + "range(test): x,y = [0:0.01:1]" + Environment.NewLine
38        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
39      }
40    }
41    protected override string TargetVariable { get { return "F"; } }
[8825]42    protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
[7860]43    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
44    protected override int TrainingPartitionStart { get { return 0; } }
45    protected override int TrainingPartitionEnd { get { return 100; } }
46    protected override int TestPartitionStart { get { return 100; } }
[9007]47    protected override int TestPartitionEnd { get { return 100 + (101 * 101); } }
[7860]48
49    protected override List<List<double>> GenerateValues() {
50      List<List<double>> data = new List<List<double>>();
51
[12740]52      List<double> oneVariableTestData = SequenceGenerator.GenerateSteps(0, 1, 0.01m).Select(v => (double)v).ToList();
[7860]53      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
54
55      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
56      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
57        data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0, 1).ToList());
58        data[i].AddRange(combinations[i]);
59      }
60
61      double x, y;
62      List<double> results = new List<double>();
63      for (int i = 0; i < data[0].Count; i++) {
64        x = data[0][i];
65        y = data[1][i];
66        results.Add(Math.Pow(x, y));
67      }
68      data.Add(results);
69
70      return data;
71    }
72  }
73}
Note: See TracBrowser for help on using the repository browser.