Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFourteen.cs @ 13599

Last change on this file since 13599 was 12740, checked in by abeham, 10 years ago

#2301: merged 12292,12293 to stable

File size: 3.2 KB
RevLine 
[7849]1#region License Information
2/* HeuristicLab
[12009]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[7849]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
[12740]25using HeuristicLab.Common;
[7849]26
27namespace HeuristicLab.Problems.Instances.DataAnalysis {
[8238]28  public class KeijzerFunctionFourteen : ArtificialRegressionDataDescriptor {
[7849]29
[8238]30    public override string Name { get { return "Keijzer 14 f(x, y) = 8 / (2 + x² + y²)"; } }
[7849]31    public override string Description {
32      get {
33        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
34        + "Authors: Maarten Keijzer" + Environment.NewLine
[8238]35        + "Function: f(x, y) = 8 / (2 + x² + y²)" + Environment.NewLine
[7849]36        + "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine
37        + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine
[9007]38        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
[7849]39      }
40    }
41    protected override string TargetVariable { get { return "F"; } }
[8825]42    protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
[7849]43    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
44    protected override int TrainingPartitionStart { get { return 0; } }
45    protected override int TrainingPartitionEnd { get { return 20; } }
[9007]46    protected override int TestPartitionStart { get { return 20; } }
47    protected override int TestPartitionEnd { get { return 20 + (601 * 601); } }
[7849]48
49    protected override List<List<double>> GenerateValues() {
50      List<List<double>> data = new List<List<double>>();
[12740]51      List<double> oneVariableTestData = SequenceGenerator.GenerateSteps(-3, 3, 0.01m).Select(v => (double) v).ToList();
[9007]52      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
53
54      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList();
55
[7849]56      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
[9007]57        data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList());
58        data[i].AddRange(combinations[i]);
[7849]59      }
60
61      double x, y;
62      List<double> results = new List<double>();
63      for (int i = 0; i < data[0].Count; i++) {
64        x = data[0][i];
65        y = data[1][i];
[9007]66        results.Add(8.0 / (2.0 + x * x + y * y));
[7849]67      }
68      data.Add(results);
69
70      return data;
71    }
72  }
73}
Note: See TracBrowser for help on using the repository browser.