Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Algorithms.DataAnalysis/3.4/SupportVectorMachine/SupportVectorMachineUtil.cs @ 14526

Last change on this file since 14526 was 14186, checked in by swagner, 8 years ago

#2526: Updated year of copyrights in license headers

File size: 11.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Linq.Expressions;
26using System.Threading.Tasks;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Data;
30using HeuristicLab.Problems.DataAnalysis;
31using HeuristicLab.Random;
32using LibSVM;
33
34namespace HeuristicLab.Algorithms.DataAnalysis {
35  public class SupportVectorMachineUtil {
36    /// <summary>
37    /// Transforms <paramref name="problemData"/> into a data structure as needed by libSVM.
38    /// </summary>
39    /// <param name="problemData">The problem data to transform</param>
40    /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
41    /// <returns>A problem data type that can be used to train a support vector machine.</returns>
42    public static svm_problem CreateSvmProblem(IDataset dataset, string targetVariable, IEnumerable<string> inputVariables, IEnumerable<int> rowIndices) {
43      double[] targetVector = dataset.GetDoubleValues(targetVariable, rowIndices).ToArray();
44      svm_node[][] nodes = new svm_node[targetVector.Length][];
45      int maxNodeIndex = 0;
46      int svmProblemRowIndex = 0;
47      List<string> inputVariablesList = inputVariables.ToList();
48      foreach (int row in rowIndices) {
49        List<svm_node> tempRow = new List<svm_node>();
50        int colIndex = 1; // make sure the smallest node index for SVM = 1
51        foreach (var inputVariable in inputVariablesList) {
52          double value = dataset.GetDoubleValue(inputVariable, row);
53          // SVM also works with missing values
54          // => don't add NaN values in the dataset to the sparse SVM matrix representation
55          if (!double.IsNaN(value)) {
56            tempRow.Add(new svm_node() { index = colIndex, value = value });
57            // nodes must be sorted in ascending ordered by column index
58            if (colIndex > maxNodeIndex) maxNodeIndex = colIndex;
59          }
60          colIndex++;
61        }
62        nodes[svmProblemRowIndex++] = tempRow.ToArray();
63      }
64      return new svm_problem { l = targetVector.Length, y = targetVector, x = nodes };
65    }
66
67    /// <summary>
68    /// Instantiate and return a svm_parameter object with default values.
69    /// </summary>
70    /// <returns>A svm_parameter object with default values</returns>
71    public static svm_parameter DefaultParameters() {
72      svm_parameter parameter = new svm_parameter();
73      parameter.svm_type = svm_parameter.NU_SVR;
74      parameter.kernel_type = svm_parameter.RBF;
75      parameter.C = 1;
76      parameter.nu = 0.5;
77      parameter.gamma = 1;
78      parameter.p = 1;
79      parameter.cache_size = 500;
80      parameter.probability = 0;
81      parameter.eps = 0.001;
82      parameter.degree = 3;
83      parameter.shrinking = 1;
84      parameter.coef0 = 0;
85
86      return parameter;
87    }
88
89    public static double CrossValidate(IDataAnalysisProblemData problemData, svm_parameter parameters, int numberOfFolds, bool shuffleFolds = true) {
90      var partitions = GenerateSvmPartitions(problemData, numberOfFolds, shuffleFolds);
91      return CalculateCrossValidationPartitions(partitions, parameters);
92    }
93
94    public static svm_parameter GridSearch(out double cvMse, IDataAnalysisProblemData problemData, Dictionary<string, IEnumerable<double>> parameterRanges, int numberOfFolds, bool shuffleFolds = true, int maxDegreeOfParallelism = 1) {
95      DoubleValue mse = new DoubleValue(Double.MaxValue);
96      var bestParam = DefaultParameters();
97      var crossProduct = parameterRanges.Values.CartesianProduct();
98      var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
99      var partitions = GenerateSvmPartitions(problemData, numberOfFolds, shuffleFolds);
100
101      var locker = new object(); // for thread synchronization
102      Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
103      parameterCombination => {
104        var parameters = DefaultParameters();
105        var parameterValues = parameterCombination.ToList();
106        for (int i = 0; i < parameterValues.Count; ++i)
107          setters[i](parameters, parameterValues[i]);
108
109        double testMse = CalculateCrossValidationPartitions(partitions, parameters);
110        if (!double.IsNaN(testMse)) {
111          lock (locker) {
112            if (testMse < mse.Value) {
113              mse.Value = testMse;
114              bestParam = (svm_parameter)parameters.Clone();
115            }
116          }
117        }
118      });
119      cvMse = mse.Value;
120      return bestParam;
121    }
122
123    private static double CalculateCrossValidationPartitions(Tuple<svm_problem, svm_problem>[] partitions, svm_parameter parameters) {
124      double avgTestMse = 0;
125      var calc = new OnlineMeanSquaredErrorCalculator();
126      foreach (Tuple<svm_problem, svm_problem> tuple in partitions) {
127        var trainingSvmProblem = tuple.Item1;
128        var testSvmProblem = tuple.Item2;
129        var model = svm.svm_train(trainingSvmProblem, parameters);
130        calc.Reset();
131        for (int i = 0; i < testSvmProblem.l; ++i)
132          calc.Add(testSvmProblem.y[i], svm.svm_predict(model, testSvmProblem.x[i]));
133        double mse = calc.ErrorState == OnlineCalculatorError.None ? calc.MeanSquaredError : double.NaN;
134        avgTestMse += mse;
135      }
136      avgTestMse /= partitions.Length;
137      return avgTestMse;
138    }
139
140    private static Tuple<svm_problem, svm_problem>[] GenerateSvmPartitions(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = true) {
141      var folds = GenerateFolds(problemData, numberOfFolds, shuffleFolds).ToList();
142      var targetVariable = GetTargetVariableName(problemData);
143      var partitions = new Tuple<svm_problem, svm_problem>[numberOfFolds];
144      for (int i = 0; i < numberOfFolds; ++i) {
145        int p = i; // avoid "access to modified closure" warning below
146        var trainingRows = folds.SelectMany((par, j) => j != p ? par : Enumerable.Empty<int>());
147        var testRows = folds[i];
148        var trainingSvmProblem = CreateSvmProblem(problemData.Dataset, targetVariable, problemData.AllowedInputVariables, trainingRows);
149        var rangeTransform = RangeTransform.Compute(trainingSvmProblem);
150        var testSvmProblem = rangeTransform.Scale(CreateSvmProblem(problemData.Dataset, targetVariable, problemData.AllowedInputVariables, testRows));
151        partitions[i] = new Tuple<svm_problem, svm_problem>(rangeTransform.Scale(trainingSvmProblem), testSvmProblem);
152      }
153      return partitions;
154    }
155
156    public static IEnumerable<IEnumerable<int>> GenerateFolds(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = true) {
157      var random = new MersenneTwister((uint)Environment.TickCount);
158      if (problemData is IRegressionProblemData) {
159        var trainingIndices = shuffleFolds ? problemData.TrainingIndices.OrderBy(x => random.Next()) : problemData.TrainingIndices;
160        return GenerateFolds(trainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
161      }
162      if (problemData is IClassificationProblemData) {
163        // when shuffle is enabled do stratified folds generation, some folds may have zero elements
164        // otherwise, generate folds normally
165        return shuffleFolds ? GenerateFoldsStratified(problemData as IClassificationProblemData, numberOfFolds, random) : GenerateFolds(problemData.TrainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
166      }
167      throw new ArgumentException("Problem data is neither regression or classification problem data.");
168    }
169
170    /// <summary>
171    /// Stratified fold generation from classification data. Stratification means that we ensure the same distribution of class labels for each fold.
172    /// The samples are grouped by class label and each group is split into @numberOfFolds parts. The final folds are formed from the joining of
173    /// the corresponding parts from each class label.
174    /// </summary>
175    /// <param name="problemData">The classification problem data.</param>
176    /// <param name="numberOfFolds">The number of folds in which to split the data.</param>
177    /// <param name="random">The random generator used to shuffle the folds.</param>
178    /// <returns>An enumerable sequece of folds, where a fold is represented by a sequence of row indices.</returns>
179    private static IEnumerable<IEnumerable<int>> GenerateFoldsStratified(IClassificationProblemData problemData, int numberOfFolds, IRandom random) {
180      var values = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
181      var valuesIndices = problemData.TrainingIndices.Zip(values, (i, v) => new { Index = i, Value = v }).ToList();
182      IEnumerable<IEnumerable<IEnumerable<int>>> foldsByClass = valuesIndices.GroupBy(x => x.Value, x => x.Index).Select(g => GenerateFolds(g, g.Count(), numberOfFolds));
183      var enumerators = foldsByClass.Select(f => f.GetEnumerator()).ToList();
184      while (enumerators.All(e => e.MoveNext())) {
185        yield return enumerators.SelectMany(e => e.Current).OrderBy(x => random.Next()).ToList();
186      }
187    }
188
189    private static IEnumerable<IEnumerable<T>> GenerateFolds<T>(IEnumerable<T> values, int valuesCount, int numberOfFolds) {
190      // if number of folds is greater than the number of values, some empty folds will be returned
191      if (valuesCount < numberOfFolds) {
192        for (int i = 0; i < numberOfFolds; ++i)
193          yield return i < valuesCount ? values.Skip(i).Take(1) : Enumerable.Empty<T>();
194      } else {
195        int f = valuesCount / numberOfFolds, r = valuesCount % numberOfFolds; // number of folds rounded to integer and remainder
196        int start = 0, end = f;
197        for (int i = 0; i < numberOfFolds; ++i) {
198          if (r > 0) {
199            ++end;
200            --r;
201          }
202          yield return values.Skip(start).Take(end - start);
203          start = end;
204          end += f;
205        }
206      }
207    }
208
209    private static Action<svm_parameter, double> GenerateSetter(string fieldName) {
210      var targetExp = Expression.Parameter(typeof(svm_parameter));
211      var valueExp = Expression.Parameter(typeof(double));
212      var fieldExp = Expression.Field(targetExp, fieldName);
213      var assignExp = Expression.Assign(fieldExp, Expression.Convert(valueExp, fieldExp.Type));
214      var setter = Expression.Lambda<Action<svm_parameter, double>>(assignExp, targetExp, valueExp).Compile();
215      return setter;
216    }
217
218    private static string GetTargetVariableName(IDataAnalysisProblemData problemData) {
219      var regressionProblemData = problemData as IRegressionProblemData;
220      var classificationProblemData = problemData as IClassificationProblemData;
221
222      if (regressionProblemData != null)
223        return regressionProblemData.TargetVariable;
224      if (classificationProblemData != null)
225        return classificationProblemData.TargetVariable;
226
227      throw new ArgumentException("Problem data is neither regression or classification problem data.");
228    }
229  }
230}
Note: See TracBrowser for help on using the repository browser.