1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Linq.Expressions;
|
---|
26 | using System.Threading.Tasks;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 | using LibSVM;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
35 | public class SupportVectorMachineUtil {
|
---|
36 | /// <summary>
|
---|
37 | /// Transforms <paramref name="dataset"/> into a data structure as needed by libSVM.
|
---|
38 | /// </summary>
|
---|
39 | /// <param name="dataset">The source dataset</param>
|
---|
40 | /// <param name="targetVariable">The target variable</param>
|
---|
41 | /// <param name="inputVariables">The selected input variables to include in the svm_problem.</param>
|
---|
42 | /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
|
---|
43 | /// <returns>A problem data type that can be used to train a support vector machine.</returns>
|
---|
44 | public static svm_problem CreateSvmProblem(IDataset dataset, string targetVariable, IEnumerable<string> inputVariables, IEnumerable<int> rowIndices) {
|
---|
45 | double[] targetVector ;
|
---|
46 | var nRows = rowIndices.Count();
|
---|
47 | if (string.IsNullOrEmpty(targetVariable)) {
|
---|
48 | // if the target variable is not set (e.g. for prediction of a trained model) we just use a zero vector
|
---|
49 | targetVector = new double[nRows];
|
---|
50 | } else {
|
---|
51 | targetVector = dataset.GetDoubleValues(targetVariable, rowIndices).ToArray();
|
---|
52 | }
|
---|
53 | svm_node[][] nodes = new svm_node[nRows][];
|
---|
54 | int maxNodeIndex = 0;
|
---|
55 | int svmProblemRowIndex = 0;
|
---|
56 | List<string> inputVariablesList = inputVariables.ToList();
|
---|
57 | foreach (int row in rowIndices) {
|
---|
58 | List<svm_node> tempRow = new List<svm_node>();
|
---|
59 | int colIndex = 1; // make sure the smallest node index for SVM = 1
|
---|
60 | foreach (var inputVariable in inputVariablesList) {
|
---|
61 | double value = dataset.GetDoubleValue(inputVariable, row);
|
---|
62 | // SVM also works with missing values
|
---|
63 | // => don't add NaN values in the dataset to the sparse SVM matrix representation
|
---|
64 | if (!double.IsNaN(value)) {
|
---|
65 | tempRow.Add(new svm_node() { index = colIndex, value = value });
|
---|
66 | // nodes must be sorted in ascending ordered by column index
|
---|
67 | if (colIndex > maxNodeIndex) maxNodeIndex = colIndex;
|
---|
68 | }
|
---|
69 | colIndex++;
|
---|
70 | }
|
---|
71 | nodes[svmProblemRowIndex++] = tempRow.ToArray();
|
---|
72 | }
|
---|
73 | return new svm_problem { l = targetVector.Length, y = targetVector, x = nodes };
|
---|
74 | }
|
---|
75 |
|
---|
76 | /// <summary>
|
---|
77 | /// Transforms <paramref name="dataset"/> into a data structure as needed by libSVM for prediction.
|
---|
78 | /// </summary>
|
---|
79 | /// <param name="dataset">The problem data to transform</param>
|
---|
80 | /// <param name="inputVariables">The selected input variables to include in the svm_problem.</param>
|
---|
81 | /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
|
---|
82 | /// <returns>A problem data type that can be used for prediction with a trained support vector machine.</returns>
|
---|
83 | public static svm_problem CreateSvmProblem(IDataset dataset, IEnumerable<string> inputVariables, IEnumerable<int> rowIndices) {
|
---|
84 | // for prediction we don't need a target variable
|
---|
85 | return CreateSvmProblem(dataset, string.Empty, inputVariables, rowIndices);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /// <summary>
|
---|
89 | /// Instantiate and return a svm_parameter object with default values.
|
---|
90 | /// </summary>
|
---|
91 | /// <returns>A svm_parameter object with default values</returns>
|
---|
92 | public static svm_parameter DefaultParameters() {
|
---|
93 | svm_parameter parameter = new svm_parameter();
|
---|
94 | parameter.svm_type = svm_parameter.NU_SVR;
|
---|
95 | parameter.kernel_type = svm_parameter.RBF;
|
---|
96 | parameter.C = 1;
|
---|
97 | parameter.nu = 0.5;
|
---|
98 | parameter.gamma = 1;
|
---|
99 | parameter.p = 1;
|
---|
100 | parameter.cache_size = 500;
|
---|
101 | parameter.probability = 0;
|
---|
102 | parameter.eps = 0.001;
|
---|
103 | parameter.degree = 3;
|
---|
104 | parameter.shrinking = 1;
|
---|
105 | parameter.coef0 = 0;
|
---|
106 |
|
---|
107 | return parameter;
|
---|
108 | }
|
---|
109 |
|
---|
110 | public static double CrossValidate(IDataAnalysisProblemData problemData, svm_parameter parameters, int numberOfFolds, bool shuffleFolds = true) {
|
---|
111 | var partitions = GenerateSvmPartitions(problemData, numberOfFolds, shuffleFolds);
|
---|
112 | return CalculateCrossValidationPartitions(partitions, parameters);
|
---|
113 | }
|
---|
114 |
|
---|
115 | public static svm_parameter GridSearch(out double cvMse, IDataAnalysisProblemData problemData, Dictionary<string, IEnumerable<double>> parameterRanges, int numberOfFolds, bool shuffleFolds = true, int maxDegreeOfParallelism = 1) {
|
---|
116 | DoubleValue mse = new DoubleValue(Double.MaxValue);
|
---|
117 | var bestParam = DefaultParameters();
|
---|
118 | var crossProduct = parameterRanges.Values.CartesianProduct();
|
---|
119 | var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
|
---|
120 | var partitions = GenerateSvmPartitions(problemData, numberOfFolds, shuffleFolds);
|
---|
121 |
|
---|
122 | var locker = new object(); // for thread synchronization
|
---|
123 | Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
|
---|
124 | parameterCombination => {
|
---|
125 | var parameters = DefaultParameters();
|
---|
126 | var parameterValues = parameterCombination.ToList();
|
---|
127 | for (int i = 0; i < parameterValues.Count; ++i)
|
---|
128 | setters[i](parameters, parameterValues[i]);
|
---|
129 |
|
---|
130 | double testMse = CalculateCrossValidationPartitions(partitions, parameters);
|
---|
131 | if (!double.IsNaN(testMse)) {
|
---|
132 | lock (locker) {
|
---|
133 | if (testMse < mse.Value) {
|
---|
134 | mse.Value = testMse;
|
---|
135 | bestParam = (svm_parameter)parameters.Clone();
|
---|
136 | }
|
---|
137 | }
|
---|
138 | }
|
---|
139 | });
|
---|
140 | cvMse = mse.Value;
|
---|
141 | return bestParam;
|
---|
142 | }
|
---|
143 |
|
---|
144 | private static double CalculateCrossValidationPartitions(Tuple<svm_problem, svm_problem>[] partitions, svm_parameter parameters) {
|
---|
145 | double avgTestMse = 0;
|
---|
146 | var calc = new OnlineMeanSquaredErrorCalculator();
|
---|
147 | foreach (Tuple<svm_problem, svm_problem> tuple in partitions) {
|
---|
148 | var trainingSvmProblem = tuple.Item1;
|
---|
149 | var testSvmProblem = tuple.Item2;
|
---|
150 | var model = svm.svm_train(trainingSvmProblem, parameters);
|
---|
151 | calc.Reset();
|
---|
152 | for (int i = 0; i < testSvmProblem.l; ++i)
|
---|
153 | calc.Add(testSvmProblem.y[i], svm.svm_predict(model, testSvmProblem.x[i]));
|
---|
154 | double mse = calc.ErrorState == OnlineCalculatorError.None ? calc.MeanSquaredError : double.NaN;
|
---|
155 | avgTestMse += mse;
|
---|
156 | }
|
---|
157 | avgTestMse /= partitions.Length;
|
---|
158 | return avgTestMse;
|
---|
159 | }
|
---|
160 |
|
---|
161 | private static Tuple<svm_problem, svm_problem>[] GenerateSvmPartitions(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = true) {
|
---|
162 | var folds = GenerateFolds(problemData, numberOfFolds, shuffleFolds).ToList();
|
---|
163 | var targetVariable = GetTargetVariableName(problemData);
|
---|
164 | var partitions = new Tuple<svm_problem, svm_problem>[numberOfFolds];
|
---|
165 | for (int i = 0; i < numberOfFolds; ++i) {
|
---|
166 | int p = i; // avoid "access to modified closure" warning below
|
---|
167 | var trainingRows = folds.SelectMany((par, j) => j != p ? par : Enumerable.Empty<int>());
|
---|
168 | var testRows = folds[i];
|
---|
169 | var trainingSvmProblem = CreateSvmProblem(problemData.Dataset, targetVariable, problemData.AllowedInputVariables, trainingRows);
|
---|
170 | var rangeTransform = RangeTransform.Compute(trainingSvmProblem);
|
---|
171 | var testSvmProblem = rangeTransform.Scale(CreateSvmProblem(problemData.Dataset, targetVariable, problemData.AllowedInputVariables, testRows));
|
---|
172 | partitions[i] = new Tuple<svm_problem, svm_problem>(rangeTransform.Scale(trainingSvmProblem), testSvmProblem);
|
---|
173 | }
|
---|
174 | return partitions;
|
---|
175 | }
|
---|
176 |
|
---|
177 | public static IEnumerable<IEnumerable<int>> GenerateFolds(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = true) {
|
---|
178 | var random = new MersenneTwister((uint)Environment.TickCount);
|
---|
179 | if (problemData is IRegressionProblemData) {
|
---|
180 | var trainingIndices = shuffleFolds ? problemData.TrainingIndices.OrderBy(x => random.Next()) : problemData.TrainingIndices;
|
---|
181 | return GenerateFolds(trainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
|
---|
182 | }
|
---|
183 | if (problemData is IClassificationProblemData) {
|
---|
184 | // when shuffle is enabled do stratified folds generation, some folds may have zero elements
|
---|
185 | // otherwise, generate folds normally
|
---|
186 | return shuffleFolds ? GenerateFoldsStratified(problemData as IClassificationProblemData, numberOfFolds, random) : GenerateFolds(problemData.TrainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
|
---|
187 | }
|
---|
188 | throw new ArgumentException("Problem data is neither regression or classification problem data.");
|
---|
189 | }
|
---|
190 |
|
---|
191 | /// <summary>
|
---|
192 | /// Stratified fold generation from classification data. Stratification means that we ensure the same distribution of class labels for each fold.
|
---|
193 | /// The samples are grouped by class label and each group is split into @numberOfFolds parts. The final folds are formed from the joining of
|
---|
194 | /// the corresponding parts from each class label.
|
---|
195 | /// </summary>
|
---|
196 | /// <param name="problemData">The classification problem data.</param>
|
---|
197 | /// <param name="numberOfFolds">The number of folds in which to split the data.</param>
|
---|
198 | /// <param name="random">The random generator used to shuffle the folds.</param>
|
---|
199 | /// <returns>An enumerable sequece of folds, where a fold is represented by a sequence of row indices.</returns>
|
---|
200 | private static IEnumerable<IEnumerable<int>> GenerateFoldsStratified(IClassificationProblemData problemData, int numberOfFolds, IRandom random) {
|
---|
201 | var values = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
202 | var valuesIndices = problemData.TrainingIndices.Zip(values, (i, v) => new { Index = i, Value = v }).ToList();
|
---|
203 | IEnumerable<IEnumerable<IEnumerable<int>>> foldsByClass = valuesIndices.GroupBy(x => x.Value, x => x.Index).Select(g => GenerateFolds(g, g.Count(), numberOfFolds));
|
---|
204 | var enumerators = foldsByClass.Select(f => f.GetEnumerator()).ToList();
|
---|
205 | while (enumerators.All(e => e.MoveNext())) {
|
---|
206 | yield return enumerators.SelectMany(e => e.Current).OrderBy(x => random.Next()).ToList();
|
---|
207 | }
|
---|
208 | }
|
---|
209 |
|
---|
210 | private static IEnumerable<IEnumerable<T>> GenerateFolds<T>(IEnumerable<T> values, int valuesCount, int numberOfFolds) {
|
---|
211 | // if number of folds is greater than the number of values, some empty folds will be returned
|
---|
212 | if (valuesCount < numberOfFolds) {
|
---|
213 | for (int i = 0; i < numberOfFolds; ++i)
|
---|
214 | yield return i < valuesCount ? values.Skip(i).Take(1) : Enumerable.Empty<T>();
|
---|
215 | } else {
|
---|
216 | int f = valuesCount / numberOfFolds, r = valuesCount % numberOfFolds; // number of folds rounded to integer and remainder
|
---|
217 | int start = 0, end = f;
|
---|
218 | for (int i = 0; i < numberOfFolds; ++i) {
|
---|
219 | if (r > 0) {
|
---|
220 | ++end;
|
---|
221 | --r;
|
---|
222 | }
|
---|
223 | yield return values.Skip(start).Take(end - start);
|
---|
224 | start = end;
|
---|
225 | end += f;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 | private static Action<svm_parameter, double> GenerateSetter(string fieldName) {
|
---|
231 | var targetExp = Expression.Parameter(typeof(svm_parameter));
|
---|
232 | var valueExp = Expression.Parameter(typeof(double));
|
---|
233 | var fieldExp = Expression.Field(targetExp, fieldName);
|
---|
234 | var assignExp = Expression.Assign(fieldExp, Expression.Convert(valueExp, fieldExp.Type));
|
---|
235 | var setter = Expression.Lambda<Action<svm_parameter, double>>(assignExp, targetExp, valueExp).Compile();
|
---|
236 | return setter;
|
---|
237 | }
|
---|
238 |
|
---|
239 | private static string GetTargetVariableName(IDataAnalysisProblemData problemData) {
|
---|
240 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
241 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
242 |
|
---|
243 | if (regressionProblemData != null)
|
---|
244 | return regressionProblemData.TargetVariable;
|
---|
245 | if (classificationProblemData != null)
|
---|
246 | return classificationProblemData.TargetVariable;
|
---|
247 |
|
---|
248 | throw new ArgumentException("Problem data is neither regression or classification problem data.");
|
---|
249 | }
|
---|
250 | }
|
---|
251 | }
|
---|