[6583] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14186] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6583] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents a nearest neighbour model for regression and classification
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
[8465] | 35 | [Item("NearestNeighbourModel", "Represents a nearest neighbour model for regression and classification.")]
|
---|
[14027] | 36 | public sealed class NearestNeighbourModel : ClassificationModel, INearestNeighbourModel {
|
---|
[6583] | 37 |
|
---|
[14327] | 38 | private readonly object kdTreeLockObject = new object();
|
---|
[6583] | 39 | private alglib.nearestneighbor.kdtree kdTree;
|
---|
| 40 | public alglib.nearestneighbor.kdtree KDTree {
|
---|
| 41 | get { return kdTree; }
|
---|
| 42 | set {
|
---|
| 43 | if (value != kdTree) {
|
---|
| 44 | if (value == null) throw new ArgumentNullException();
|
---|
| 45 | kdTree = value;
|
---|
| 46 | OnChanged(EventArgs.Empty);
|
---|
| 47 | }
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
[14327] | 51 |
|
---|
[14027] | 52 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 53 | get { return allowedInputVariables; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[6583] | 56 | [Storable]
|
---|
| 57 | private string[] allowedInputVariables;
|
---|
| 58 | [Storable]
|
---|
| 59 | private double[] classValues;
|
---|
| 60 | [Storable]
|
---|
| 61 | private int k;
|
---|
[14308] | 62 | [Storable(DefaultValue = null)]
|
---|
| 63 | private double[] weights; // not set for old versions loaded from disk
|
---|
| 64 | [Storable(DefaultValue = null)]
|
---|
| 65 | private double[] offsets; // not set for old versions loaded from disk
|
---|
[8465] | 66 |
|
---|
[6583] | 67 | [StorableConstructor]
|
---|
| 68 | private NearestNeighbourModel(bool deserializing)
|
---|
| 69 | : base(deserializing) {
|
---|
| 70 | if (deserializing)
|
---|
| 71 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
| 72 | }
|
---|
| 73 | private NearestNeighbourModel(NearestNeighbourModel original, Cloner cloner)
|
---|
| 74 | : base(original, cloner) {
|
---|
| 75 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
| 76 | kdTree.approxf = original.kdTree.approxf;
|
---|
| 77 | kdTree.boxmax = (double[])original.kdTree.boxmax.Clone();
|
---|
| 78 | kdTree.boxmin = (double[])original.kdTree.boxmin.Clone();
|
---|
| 79 | kdTree.buf = (double[])original.kdTree.buf.Clone();
|
---|
| 80 | kdTree.curboxmax = (double[])original.kdTree.curboxmax.Clone();
|
---|
| 81 | kdTree.curboxmin = (double[])original.kdTree.curboxmin.Clone();
|
---|
| 82 | kdTree.curdist = original.kdTree.curdist;
|
---|
| 83 | kdTree.debugcounter = original.kdTree.debugcounter;
|
---|
| 84 | kdTree.idx = (int[])original.kdTree.idx.Clone();
|
---|
| 85 | kdTree.kcur = original.kdTree.kcur;
|
---|
| 86 | kdTree.kneeded = original.kdTree.kneeded;
|
---|
| 87 | kdTree.n = original.kdTree.n;
|
---|
| 88 | kdTree.nodes = (int[])original.kdTree.nodes.Clone();
|
---|
| 89 | kdTree.normtype = original.kdTree.normtype;
|
---|
| 90 | kdTree.nx = original.kdTree.nx;
|
---|
| 91 | kdTree.ny = original.kdTree.ny;
|
---|
| 92 | kdTree.r = (double[])original.kdTree.r.Clone();
|
---|
| 93 | kdTree.rneeded = original.kdTree.rneeded;
|
---|
| 94 | kdTree.selfmatch = original.kdTree.selfmatch;
|
---|
| 95 | kdTree.splits = (double[])original.kdTree.splits.Clone();
|
---|
| 96 | kdTree.tags = (int[])original.kdTree.tags.Clone();
|
---|
| 97 | kdTree.x = (double[])original.kdTree.x.Clone();
|
---|
| 98 | kdTree.xy = (double[,])original.kdTree.xy.Clone();
|
---|
| 99 |
|
---|
| 100 | k = original.k;
|
---|
[14308] | 101 | isCompatibilityLoaded = original.IsCompatibilityLoaded;
|
---|
| 102 | if (!IsCompatibilityLoaded) {
|
---|
| 103 | weights = new double[original.weights.Length];
|
---|
| 104 | Array.Copy(original.weights, weights, weights.Length);
|
---|
| 105 | offsets = new double[original.offsets.Length];
|
---|
| 106 | Array.Copy(original.offsets, this.offsets, this.offsets.Length);
|
---|
| 107 | }
|
---|
[6583] | 108 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 109 | if (original.classValues != null)
|
---|
| 110 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 111 | }
|
---|
[14308] | 112 | public NearestNeighbourModel(IDataset dataset, IEnumerable<int> rows, int k, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<double> weights = null, double[] classValues = null)
|
---|
[14027] | 113 | : base(targetVariable) {
|
---|
[8467] | 114 | Name = ItemName;
|
---|
| 115 | Description = ItemDescription;
|
---|
[6583] | 116 | this.k = k;
|
---|
| 117 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
[14308] | 118 | double[,] inputMatrix;
|
---|
| 119 | if (IsCompatibilityLoaded) {
|
---|
| 120 | // no scaling
|
---|
| 121 | inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,
|
---|
| 122 | this.allowedInputVariables.Concat(new string[] { targetVariable }),
|
---|
| 123 | rows);
|
---|
| 124 | } else {
|
---|
| 125 | this.offsets = this.allowedInputVariables
|
---|
| 126 | .Select(name => dataset.GetDoubleValues(name, rows).Average() * -1)
|
---|
| 127 | .Concat(new double[] { 0 }) // no offset for target variable
|
---|
| 128 | .ToArray();
|
---|
| 129 | if (weights == null) {
|
---|
| 130 | // automatic determination of weights (all features should have variance = 1)
|
---|
| 131 | this.weights = this.allowedInputVariables
|
---|
| 132 | .Select(name => 1.0 / dataset.GetDoubleValues(name, rows).StandardDeviationPop())
|
---|
| 133 | .Concat(new double[] { 1.0 }) // no scaling for target variable
|
---|
| 134 | .ToArray();
|
---|
| 135 | } else {
|
---|
| 136 | // user specified weights (+ 1 for target)
|
---|
| 137 | this.weights = weights.Concat(new double[] { 1.0 }).ToArray();
|
---|
| 138 | if (this.weights.Length - 1 != this.allowedInputVariables.Length)
|
---|
| 139 | throw new ArgumentException("The number of elements in the weight vector must match the number of input variables");
|
---|
| 140 | }
|
---|
| 141 | inputMatrix = CreateScaledData(dataset, this.allowedInputVariables.Concat(new string[] { targetVariable }), rows, this.offsets, this.weights);
|
---|
| 142 | }
|
---|
[8465] | 143 |
|
---|
| 144 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
| 145 | throw new NotSupportedException(
|
---|
| 146 | "Nearest neighbour classification does not support NaN or infinity values in the input dataset.");
|
---|
| 147 |
|
---|
| 148 | this.kdTree = new alglib.nearestneighbor.kdtree();
|
---|
| 149 |
|
---|
| 150 | var nRows = inputMatrix.GetLength(0);
|
---|
| 151 | var nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 152 |
|
---|
| 153 | if (classValues != null) {
|
---|
[6583] | 154 | this.classValues = (double[])classValues.Clone();
|
---|
[8465] | 155 | int nClasses = classValues.Length;
|
---|
| 156 | // map original class values to values [0..nClasses-1]
|
---|
| 157 | var classIndices = new Dictionary<double, double>();
|
---|
| 158 | for (int i = 0; i < nClasses; i++)
|
---|
| 159 | classIndices[classValues[i]] = i;
|
---|
| 160 |
|
---|
| 161 | for (int row = 0; row < nRows; row++) {
|
---|
| 162 | inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | alglib.nearestneighbor.kdtreebuild(inputMatrix, nRows, inputMatrix.GetLength(1) - 1, 1, 2, kdTree);
|
---|
[6583] | 166 | }
|
---|
| 167 |
|
---|
[14308] | 168 | private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) {
|
---|
| 169 | var x = new double[rows.Count(), variables.Count()];
|
---|
| 170 | var colIdx = 0;
|
---|
| 171 | foreach (var variableName in variables) {
|
---|
| 172 | var rowIdx = 0;
|
---|
| 173 | foreach (var val in dataset.GetDoubleValues(variableName, rows)) {
|
---|
| 174 | x[rowIdx, colIdx] = (val + offsets[colIdx]) * factors[colIdx];
|
---|
| 175 | rowIdx++;
|
---|
| 176 | }
|
---|
| 177 | colIdx++;
|
---|
| 178 | }
|
---|
| 179 | return x;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
[6583] | 182 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 183 | return new NearestNeighbourModel(this, cloner);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
[12702] | 186 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14308] | 187 | double[,] inputData;
|
---|
| 188 | if (IsCompatibilityLoaded) {
|
---|
| 189 | inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 190 | } else {
|
---|
| 191 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
| 192 | }
|
---|
[6583] | 193 |
|
---|
| 194 | int n = inputData.GetLength(0);
|
---|
| 195 | int columns = inputData.GetLength(1);
|
---|
| 196 | double[] x = new double[columns];
|
---|
| 197 | double[] dists = new double[k];
|
---|
| 198 | double[,] neighbours = new double[k, columns + 1];
|
---|
| 199 |
|
---|
| 200 | for (int row = 0; row < n; row++) {
|
---|
| 201 | for (int column = 0; column < columns; column++) {
|
---|
| 202 | x[column] = inputData[row, column];
|
---|
| 203 | }
|
---|
[14327] | 204 | int numNeighbours;
|
---|
| 205 | lock (kdTreeLockObject) { // gkronber: the following calls change the kdTree data structure
|
---|
| 206 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, false);
|
---|
| 207 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
| 208 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
| 209 | }
|
---|
[6583] | 210 |
|
---|
| 211 | double distanceWeightedValue = 0.0;
|
---|
| 212 | double distsSum = 0.0;
|
---|
[14327] | 213 | for (int i = 0; i < numNeighbours; i++) {
|
---|
[6583] | 214 | distanceWeightedValue += neighbours[i, columns] / dists[i];
|
---|
| 215 | distsSum += 1.0 / dists[i];
|
---|
| 216 | }
|
---|
| 217 | yield return distanceWeightedValue / distsSum;
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
[14027] | 221 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[8465] | 222 | if (classValues == null) throw new InvalidOperationException("No class values are defined.");
|
---|
[14308] | 223 | double[,] inputData;
|
---|
| 224 | if (IsCompatibilityLoaded) {
|
---|
| 225 | inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
| 226 | } else {
|
---|
| 227 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
| 228 | }
|
---|
[6583] | 229 | int n = inputData.GetLength(0);
|
---|
| 230 | int columns = inputData.GetLength(1);
|
---|
| 231 | double[] x = new double[columns];
|
---|
| 232 | int[] y = new int[classValues.Length];
|
---|
| 233 | double[] dists = new double[k];
|
---|
| 234 | double[,] neighbours = new double[k, columns + 1];
|
---|
| 235 |
|
---|
| 236 | for (int row = 0; row < n; row++) {
|
---|
| 237 | for (int column = 0; column < columns; column++) {
|
---|
| 238 | x[column] = inputData[row, column];
|
---|
| 239 | }
|
---|
[14327] | 240 | int numNeighbours;
|
---|
| 241 | lock (kdTreeLockObject) {
|
---|
| 242 | // gkronber: the following calls change the kdTree data structure
|
---|
| 243 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, false);
|
---|
| 244 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
| 245 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
| 246 | }
|
---|
[6583] | 247 | Array.Clear(y, 0, y.Length);
|
---|
[14327] | 248 | for (int i = 0; i < numNeighbours; i++) {
|
---|
[6583] | 249 | int classValue = (int)Math.Round(neighbours[i, columns]);
|
---|
| 250 | y[classValue]++;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | // find class for with the largest probability value
|
---|
| 254 | int maxProbClassIndex = 0;
|
---|
| 255 | double maxProb = y[0];
|
---|
| 256 | for (int i = 1; i < y.Length; i++) {
|
---|
| 257 | if (maxProb < y[i]) {
|
---|
| 258 | maxProb = y[i];
|
---|
| 259 | maxProbClassIndex = i;
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | yield return classValues[maxProbClassIndex];
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
[14027] | 266 |
|
---|
[6603] | 267 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[14027] | 268 | return new NearestNeighbourRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 269 | }
|
---|
[14027] | 270 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 271 | return new NearestNeighbourClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6604] | 272 | }
|
---|
[6603] | 273 |
|
---|
[6583] | 274 | #region events
|
---|
| 275 | public event EventHandler Changed;
|
---|
| 276 | private void OnChanged(EventArgs e) {
|
---|
| 277 | var handlers = Changed;
|
---|
| 278 | if (handlers != null)
|
---|
| 279 | handlers(this, e);
|
---|
| 280 | }
|
---|
| 281 | #endregion
|
---|
| 282 |
|
---|
[14308] | 283 |
|
---|
| 284 | // BackwardsCompatibility3.3
|
---|
| 285 | #region Backwards compatible code, remove with 3.4
|
---|
| 286 |
|
---|
| 287 | private bool isCompatibilityLoaded = false; // new kNN models have the value false, kNN models loaded from disc have the value true
|
---|
| 288 | [Storable(DefaultValue = true)]
|
---|
| 289 | public bool IsCompatibilityLoaded {
|
---|
| 290 | get { return isCompatibilityLoaded; }
|
---|
| 291 | set { isCompatibilityLoaded = value; }
|
---|
| 292 | }
|
---|
| 293 | #endregion
|
---|
[6583] | 294 | #region persistence
|
---|
[6584] | 295 | [Storable]
|
---|
| 296 | public double KDTreeApproxF {
|
---|
| 297 | get { return kdTree.approxf; }
|
---|
| 298 | set { kdTree.approxf = value; }
|
---|
| 299 | }
|
---|
| 300 | [Storable]
|
---|
| 301 | public double[] KDTreeBoxMax {
|
---|
| 302 | get { return kdTree.boxmax; }
|
---|
| 303 | set { kdTree.boxmax = value; }
|
---|
| 304 | }
|
---|
| 305 | [Storable]
|
---|
| 306 | public double[] KDTreeBoxMin {
|
---|
| 307 | get { return kdTree.boxmin; }
|
---|
| 308 | set { kdTree.boxmin = value; }
|
---|
| 309 | }
|
---|
| 310 | [Storable]
|
---|
| 311 | public double[] KDTreeBuf {
|
---|
| 312 | get { return kdTree.buf; }
|
---|
| 313 | set { kdTree.buf = value; }
|
---|
| 314 | }
|
---|
| 315 | [Storable]
|
---|
| 316 | public double[] KDTreeCurBoxMax {
|
---|
| 317 | get { return kdTree.curboxmax; }
|
---|
| 318 | set { kdTree.curboxmax = value; }
|
---|
| 319 | }
|
---|
| 320 | [Storable]
|
---|
| 321 | public double[] KDTreeCurBoxMin {
|
---|
| 322 | get { return kdTree.curboxmin; }
|
---|
| 323 | set { kdTree.curboxmin = value; }
|
---|
| 324 | }
|
---|
| 325 | [Storable]
|
---|
| 326 | public double KDTreeCurDist {
|
---|
| 327 | get { return kdTree.curdist; }
|
---|
| 328 | set { kdTree.curdist = value; }
|
---|
| 329 | }
|
---|
| 330 | [Storable]
|
---|
| 331 | public int KDTreeDebugCounter {
|
---|
| 332 | get { return kdTree.debugcounter; }
|
---|
| 333 | set { kdTree.debugcounter = value; }
|
---|
| 334 | }
|
---|
| 335 | [Storable]
|
---|
| 336 | public int[] KDTreeIdx {
|
---|
| 337 | get { return kdTree.idx; }
|
---|
| 338 | set { kdTree.idx = value; }
|
---|
| 339 | }
|
---|
| 340 | [Storable]
|
---|
| 341 | public int KDTreeKCur {
|
---|
| 342 | get { return kdTree.kcur; }
|
---|
| 343 | set { kdTree.kcur = value; }
|
---|
| 344 | }
|
---|
| 345 | [Storable]
|
---|
| 346 | public int KDTreeKNeeded {
|
---|
| 347 | get { return kdTree.kneeded; }
|
---|
| 348 | set { kdTree.kneeded = value; }
|
---|
| 349 | }
|
---|
| 350 | [Storable]
|
---|
| 351 | public int KDTreeN {
|
---|
| 352 | get { return kdTree.n; }
|
---|
| 353 | set { kdTree.n = value; }
|
---|
| 354 | }
|
---|
| 355 | [Storable]
|
---|
| 356 | public int[] KDTreeNodes {
|
---|
| 357 | get { return kdTree.nodes; }
|
---|
| 358 | set { kdTree.nodes = value; }
|
---|
| 359 | }
|
---|
| 360 | [Storable]
|
---|
| 361 | public int KDTreeNormType {
|
---|
| 362 | get { return kdTree.normtype; }
|
---|
| 363 | set { kdTree.normtype = value; }
|
---|
| 364 | }
|
---|
| 365 | [Storable]
|
---|
| 366 | public int KDTreeNX {
|
---|
| 367 | get { return kdTree.nx; }
|
---|
| 368 | set { kdTree.nx = value; }
|
---|
| 369 | }
|
---|
| 370 | [Storable]
|
---|
| 371 | public int KDTreeNY {
|
---|
| 372 | get { return kdTree.ny; }
|
---|
| 373 | set { kdTree.ny = value; }
|
---|
| 374 | }
|
---|
| 375 | [Storable]
|
---|
| 376 | public double[] KDTreeR {
|
---|
| 377 | get { return kdTree.r; }
|
---|
| 378 | set { kdTree.r = value; }
|
---|
| 379 | }
|
---|
| 380 | [Storable]
|
---|
| 381 | public double KDTreeRNeeded {
|
---|
| 382 | get { return kdTree.rneeded; }
|
---|
| 383 | set { kdTree.rneeded = value; }
|
---|
| 384 | }
|
---|
| 385 | [Storable]
|
---|
| 386 | public bool KDTreeSelfMatch {
|
---|
| 387 | get { return kdTree.selfmatch; }
|
---|
| 388 | set { kdTree.selfmatch = value; }
|
---|
| 389 | }
|
---|
| 390 | [Storable]
|
---|
| 391 | public double[] KDTreeSplits {
|
---|
| 392 | get { return kdTree.splits; }
|
---|
| 393 | set { kdTree.splits = value; }
|
---|
| 394 | }
|
---|
| 395 | [Storable]
|
---|
| 396 | public int[] KDTreeTags {
|
---|
| 397 | get { return kdTree.tags; }
|
---|
| 398 | set { kdTree.tags = value; }
|
---|
| 399 | }
|
---|
| 400 | [Storable]
|
---|
| 401 | public double[] KDTreeX {
|
---|
| 402 | get { return kdTree.x; }
|
---|
| 403 | set { kdTree.x = value; }
|
---|
| 404 | }
|
---|
| 405 | [Storable]
|
---|
| 406 | public double[,] KDTreeXY {
|
---|
| 407 | get { return kdTree.xy; }
|
---|
| 408 | set { kdTree.xy = value; }
|
---|
| 409 | }
|
---|
[6583] | 410 | #endregion
|
---|
| 411 | }
|
---|
| 412 | }
|
---|