1 | 1. Title: Miba Friction Plate Testing Data
|
---|
2 | 2. Sources:
|
---|
3 | (a) Miba frictec, Andreas Promberger, Peter Mitterbauer Str. 1,
|
---|
4 | A-4661 Roitham, AUSTRIA, +43 76139020, Andreas.promberger@miba.com
|
---|
5 | (b) FH Upper Austria, Gabriel Kronberger, Softwarepark 11,
|
---|
6 | A-4232 Hagenberg, AUSTRIA, +43 50804 22320,
|
---|
7 | gabriel.kronberger@heuristiclab.com
|
---|
8 | (c) April 2017
|
---|
9 |
|
---|
10 |
|
---|
11 | 3. Past Usage:
|
---|
12 | - G. Kronberger, M. Kommenda, E. Lughofer, S. Saminger-Platz,
|
---|
13 | A. Promberger, F. Nickel, S. Winkler, M. Affenzeller - Robust
|
---|
14 | Generalized Fuzzy Modeling and Enhanced Symbolic Regression for
|
---|
15 | Modeling Tribological Systems, submitted to Applied Soft
|
---|
16 | Computing, 2017
|
---|
17 |
|
---|
18 | - E. Lughofer, G. Kronberger, M. Kommenda, S. Saminger-Platz,
|
---|
19 | A. Promberger, F. Nickel, S. M. Winkler, M. Affenzeller - Robust
|
---|
20 | Fuzzy Modeling and Symbolic Regression for Establishing Accurate
|
---|
21 | and Interpretable Prediction Models in Supervising Tribological
|
---|
22 | Systems - Proceedings of the 8th International Joint Conference on
|
---|
23 | Computational Intelligence, Porto, Portugal, 2016, pp. 51-63
|
---|
24 |
|
---|
25 | 4. Relevant information:
|
---|
26 | A set of datasets for regression modelling of
|
---|
27 | friction characteristics of friction plate systems. The data stem
|
---|
28 | from tests of friction plates with commercial test benches for wet
|
---|
29 | friction plate systems. Friction characteristics such as the
|
---|
30 | coefficient of friction, wear, and temperatures are measured at
|
---|
31 | different loads. The goal is to predict these values given load
|
---|
32 | parameters. Data have been kindly provided by Miba frictec company.
|
---|
33 |
|
---|
34 | 5. Number of instances
|
---|
35 | A separate file is provided for each target variable. The values of
|
---|
36 | the target variable are given in the last column.
|
---|
37 |
|
---|
38 | - Cf1: 815 instances
|
---|
39 | - Cf2: 2921 instances
|
---|
40 | - Cf3: 657 instances
|
---|
41 | - Cf4: 649 instances
|
---|
42 | - NvhRating: 3943 instances
|
---|
43 | - Temp1: 656 instances
|
---|
44 | - Temp2: 648 instances
|
---|
45 | - Wear1: 904 instances
|
---|
46 | - Wear2: 902 instances
|
---|
47 |
|
---|
48 | 6. Number of Attributes: 28
|
---|
49 | (2 binary, 22 numeric & continuous, and four nominal) Depending on
|
---|
50 | the target variable (or file) some of the attributes might be
|
---|
51 | constant.
|
---|
52 |
|
---|
53 | 7. Attribute Information
|
---|
54 | The first column 'Partition' contains the partition assignment that
|
---|
55 | should be used for validation of algorithms. This attribute should
|
---|
56 | not be used for modelling. Rows must not be shuffled as in standard
|
---|
57 | cross-validation.
|
---|
58 |
|
---|
59 | - Source1: indicates that the row stems from data source one [binary]
|
---|
60 | - Source2: indicates that the row stems from data source two (
|
---|
61 | redundant given Source1) [binary]
|
---|
62 | - x1: an attribute of the testing procedure [numeric, integer]
|
---|
63 | - Material_Cat: represents the type of friction material [nominal]
|
---|
64 | - x2, ... ,x16: material attributes [numeric, continuous]
|
---|
65 | - Material: represents the friction material [nominal]
|
---|
66 | - Grooving: represents the grooving (surface structure) on the
|
---|
67 | friction plate [nominal]
|
---|
68 | - Oil: represents the oil type [nominal]
|
---|
69 | - x17, ... ,x22 load attributes [numeric, continuous]
|
---|
70 |
|
---|
71 |
|
---|
72 | If you use these data files please use the following reference:
|
---|
73 | G. Kronberger, M. Kommenda, E. Lughofer, S. Saminger-Platz,
|
---|
74 | A. Promberger, F. Nickel, S. Winkler, M. Affenzeller - Robust
|
---|
75 | Generalized Fuzzy Modeling and Enhanced Symbolic Regression for
|
---|
76 | Modeling Tribological Systems, submitted to Applied Soft Computing,
|
---|
77 | 2017
|
---|
78 |
|
---|