[14792] | 1 | 1. Title: Miba Friction Plate Testing Data
|
---|
| 2 | 2. Sources:
|
---|
| 3 | (a) Miba frictec, Andreas Promberger, Peter Mitterbauer Str. 1,
|
---|
| 4 | A-4661 Roitham, AUSTRIA, +43 76139020, Andreas.promberger@miba.com
|
---|
| 5 | (b) FH Upper Austria, Gabriel Kronberger, Softwarepark 11,
|
---|
| 6 | A-4232 Hagenberg, AUSTRIA, +43 50804 22320,
|
---|
| 7 | gabriel.kronberger@heuristiclab.com
|
---|
[14794] | 8 | (c) April 2017
|
---|
[14792] | 9 |
|
---|
| 10 |
|
---|
| 11 | 3. Past Usage:
|
---|
| 12 | - G. Kronberger, M. Kommenda, E. Lughofer, S. Saminger-Platz,
|
---|
| 13 | A. Promberger, F. Nickel, S. Winkler, M. Affenzeller - Robust
|
---|
| 14 | Generalized Fuzzy Modeling and Enhanced Symbolic Regression for
|
---|
| 15 | Modeling Tribological Systems, submitted to Applied Soft
|
---|
| 16 | Computing, 2017
|
---|
| 17 |
|
---|
| 18 | - E. Lughofer, G. Kronberger, M. Kommenda, S. Saminger-Platz,
|
---|
| 19 | A. Promberger, F. Nickel, S. M. Winkler, M. Affenzeller - Robust
|
---|
| 20 | Fuzzy Modeling and Symbolic Regression for Establishing Accurate
|
---|
| 21 | and Interpretable Prediction Models in Supervising Tribological
|
---|
| 22 | Systems - Proceedings of the 8th International Joint Conference on
|
---|
| 23 | Computational Intelligence, Porto, Portugal, 2016, pp. 51-63
|
---|
| 24 |
|
---|
| 25 | 4. Relevant information:
|
---|
| 26 | A set of datasets for regression modelling of
|
---|
| 27 | friction characteristics of friction plate systems. The data stem
|
---|
| 28 | from tests of friction plates with commercial test benches for wet
|
---|
| 29 | friction plate systems. Friction characteristics such as the
|
---|
| 30 | coefficient of friction, wear, and temperatures are measured at
|
---|
| 31 | different loads. The goal is to predict these values given load
|
---|
| 32 | parameters. Data have been kindly provided by Miba frictec company.
|
---|
| 33 |
|
---|
| 34 | 5. Number of instances
|
---|
| 35 | A separate file is provided for each target variable. The values of
|
---|
| 36 | the target variable are given in the last column.
|
---|
| 37 |
|
---|
| 38 | - Cf1: 815 instances
|
---|
| 39 | - Cf2: 2921 instances
|
---|
| 40 | - Cf3: 657 instances
|
---|
| 41 | - Cf4: 649 instances
|
---|
[14794] | 42 | - NvhRating: 3943 instances
|
---|
[14792] | 43 | - Temp1: 656 instances
|
---|
| 44 | - Temp2: 648 instances
|
---|
| 45 | - Wear1: 904 instances
|
---|
| 46 | - Wear2: 902 instances
|
---|
| 47 |
|
---|
| 48 | 6. Number of Attributes: 28
|
---|
| 49 | (2 binary, 22 numeric & continuous, and four nominal) Depending on
|
---|
| 50 | the target variable (or file) some of the attributes might be
|
---|
| 51 | constant.
|
---|
| 52 |
|
---|
| 53 | 7. Attribute Information
|
---|
| 54 | The first column 'Partition' contains the partition assignment that
|
---|
| 55 | should be used for validation of algorithms. This attribute should
|
---|
| 56 | not be used for modelling. Rows must not be shuffled as in standard
|
---|
| 57 | cross-validation.
|
---|
| 58 |
|
---|
| 59 | - Source1: indicates that the row stems from data source one [binary]
|
---|
| 60 | - Source2: indicates that the row stems from data source two (
|
---|
| 61 | redundant given Source1) [binary]
|
---|
| 62 | - x1: an attribute of the testing procedure [numeric, integer]
|
---|
| 63 | - Material_Cat: represents the type of friction material [nominal]
|
---|
| 64 | - x2, ... ,x16: material attributes [numeric, continuous]
|
---|
| 65 | - Material: represents the friction material [nominal]
|
---|
| 66 | - Grooving: represents the grooving (surface structure) on the
|
---|
| 67 | friction plate [nominal]
|
---|
| 68 | - Oil: represents the oil type [nominal]
|
---|
| 69 | - x17, ... ,x22 load attributes [numeric, continuous]
|
---|
| 70 |
|
---|
| 71 |
|
---|
| 72 | If you use these data files please use the following reference:
|
---|
| 73 | G. Kronberger, M. Kommenda, E. Lughofer, S. Saminger-Platz,
|
---|
| 74 | A. Promberger, F. Nickel, S. Winkler, M. Affenzeller - Robust
|
---|
| 75 | Generalized Fuzzy Modeling and Enhanced Symbolic Regression for
|
---|
| 76 | Modeling Tribological Systems, submitted to Applied Soft Computing,
|
---|
| 77 | 2017
|
---|
| 78 |
|
---|