[14237] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 28 | [StorableClass]
|
---|
[14238] | 29 | public abstract class VariableTreeNodeBase : SymbolicExpressionTreeTerminalNode, IVariableTreeNode {
|
---|
[14237] | 30 | public new VariableBase Symbol {
|
---|
| 31 | get { return (VariableBase)base.Symbol; }
|
---|
| 32 | }
|
---|
| 33 | [Storable]
|
---|
| 34 | private double weight;
|
---|
| 35 | public double Weight {
|
---|
| 36 | get { return weight; }
|
---|
| 37 | set { weight = value; }
|
---|
| 38 | }
|
---|
| 39 | [Storable]
|
---|
| 40 | private string variableName;
|
---|
| 41 | public string VariableName {
|
---|
| 42 | get { return variableName; }
|
---|
| 43 | set { variableName = value; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | [StorableConstructor]
|
---|
| 47 | protected VariableTreeNodeBase(bool deserializing) : base(deserializing) { }
|
---|
| 48 | protected VariableTreeNodeBase(VariableTreeNodeBase original, Cloner cloner)
|
---|
| 49 | : base(original, cloner) {
|
---|
| 50 | weight = original.weight;
|
---|
| 51 | variableName = original.variableName;
|
---|
| 52 | }
|
---|
| 53 | protected VariableTreeNodeBase() { }
|
---|
| 54 | protected VariableTreeNodeBase(VariableBase variableSymbol) : base(variableSymbol) { }
|
---|
| 55 |
|
---|
| 56 | public override bool HasLocalParameters {
|
---|
| 57 | get { return true; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public override void ResetLocalParameters(IRandom random) {
|
---|
| 61 | base.ResetLocalParameters(random);
|
---|
| 62 | weight = NormalDistributedRandom.NextDouble(random, Symbol.WeightMu, Symbol.WeightSigma);
|
---|
| 63 |
|
---|
| 64 | #pragma warning disable 612, 618
|
---|
| 65 | variableName = Symbol.VariableNames.SelectRandom(random);
|
---|
| 66 | #pragma warning restore 612, 618
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | public override void ShakeLocalParameters(IRandom random, double shakingFactor) {
|
---|
| 70 | base.ShakeLocalParameters(random, shakingFactor);
|
---|
| 71 | // 50% additive & 50% multiplicative
|
---|
| 72 | if (random.NextDouble() < 0) {
|
---|
| 73 | double x = NormalDistributedRandom.NextDouble(random, Symbol.WeightManipulatorMu, Symbol.WeightManipulatorSigma);
|
---|
| 74 | weight = weight + x * shakingFactor;
|
---|
| 75 | } else {
|
---|
| 76 | double x = NormalDistributedRandom.NextDouble(random, 1.0, Symbol.MultiplicativeWeightManipulatorSigma);
|
---|
| 77 | weight = weight * x;
|
---|
| 78 | }
|
---|
| 79 | #pragma warning disable 612, 618
|
---|
| 80 | variableName = Symbol.VariableNames.SelectRandom(random);
|
---|
| 81 | #pragma warning restore 612, 618
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public override string ToString() {
|
---|
| 85 | if (weight.IsAlmost(1.0)) return variableName;
|
---|
| 86 | else return weight.ToString("E4") + " " + variableName;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 | }
|
---|