1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
28 | [StorableClass]
|
---|
29 | public abstract class VariableTreeNodeBase : SymbolicExpressionTreeTerminalNode, IVariableTreeNode {
|
---|
30 | public new VariableBase Symbol {
|
---|
31 | get { return (VariableBase)base.Symbol; }
|
---|
32 | }
|
---|
33 | [Storable]
|
---|
34 | private double weight;
|
---|
35 | public double Weight {
|
---|
36 | get { return weight; }
|
---|
37 | set { weight = value; }
|
---|
38 | }
|
---|
39 | [Storable]
|
---|
40 | private string variableName;
|
---|
41 | public string VariableName {
|
---|
42 | get { return variableName; }
|
---|
43 | set { variableName = value; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | [StorableConstructor]
|
---|
47 | protected VariableTreeNodeBase(bool deserializing) : base(deserializing) { }
|
---|
48 | protected VariableTreeNodeBase(VariableTreeNodeBase original, Cloner cloner)
|
---|
49 | : base(original, cloner) {
|
---|
50 | weight = original.weight;
|
---|
51 | variableName = original.variableName;
|
---|
52 | }
|
---|
53 | protected VariableTreeNodeBase() { }
|
---|
54 | protected VariableTreeNodeBase(VariableBase variableSymbol) : base(variableSymbol) { }
|
---|
55 |
|
---|
56 | public override bool HasLocalParameters {
|
---|
57 | get { return true; }
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override void ResetLocalParameters(IRandom random) {
|
---|
61 | base.ResetLocalParameters(random);
|
---|
62 | weight = NormalDistributedRandom.NextDouble(random, Symbol.WeightMu, Symbol.WeightSigma);
|
---|
63 |
|
---|
64 | #pragma warning disable 612, 618
|
---|
65 | variableName = Symbol.VariableNames.SelectRandom(random);
|
---|
66 | #pragma warning restore 612, 618
|
---|
67 | }
|
---|
68 |
|
---|
69 | public override void ShakeLocalParameters(IRandom random, double shakingFactor) {
|
---|
70 | base.ShakeLocalParameters(random, shakingFactor);
|
---|
71 | // 50% additive & 50% multiplicative
|
---|
72 | if (random.NextDouble() < 0) {
|
---|
73 | double x = NormalDistributedRandom.NextDouble(random, Symbol.WeightManipulatorMu, Symbol.WeightManipulatorSigma);
|
---|
74 | weight = weight + x * shakingFactor;
|
---|
75 | } else {
|
---|
76 | double x = NormalDistributedRandom.NextDouble(random, 1.0, Symbol.MultiplicativeWeightManipulatorSigma);
|
---|
77 | weight = weight * x;
|
---|
78 | }
|
---|
79 | #pragma warning disable 612, 618
|
---|
80 | variableName = Symbol.VariableNames.SelectRandom(random);
|
---|
81 | #pragma warning restore 612, 618
|
---|
82 | }
|
---|
83 |
|
---|
84 | public override string ToString() {
|
---|
85 | if (weight.IsAlmost(1.0)) return variableName;
|
---|
86 | else return weight.ToString("E4") + " " + variableName;
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|