Free cookie consent management tool by TermsFeed Policy Generator

source: branches/WebJobManager/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialThreeDimensional.cs

Last change on this file was 12292, checked in by pfleck, 10 years ago

#2301 Removed the GenerateSteps from the ValueGenerator and put it into the new SequenceGenerator.
Adapted DataAnalysis-Instances and scripts (samples and unit tests).

File size: 3.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26
27namespace HeuristicLab.Problems.Instances.DataAnalysis {
28  public class RationalPolynomialThreeDimensional : ArtificialRegressionDataDescriptor {
29
30    public override string Name { get { return "Vladislavleva-5 F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))"; } }
31    public override string Description {
32      get {
33        return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
34        + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
35        + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine
36        + "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine
37        + "Test Data: (14*12*14) points X1, X3 = (-0.05:0.15:2.05), X2 = (0.95:0.1:2.05)" + Environment.NewLine
38        + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps";
39      }
40    }
41    protected override string TargetVariable { get { return "Y"; } }
42    protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "Y" }; } }
43    protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } }
44    protected override int TrainingPartitionStart { get { return 0; } }
45    protected override int TrainingPartitionEnd { get { return 300; } }
46    protected override int TestPartitionStart { get { return 300; } }
47    protected override int TestPartitionEnd { get { return 300 + (15 * 12 * 15); } }
48
49    protected override List<List<double>> GenerateValues() {
50      List<List<double>> data = new List<List<double>>();
51
52      int n = 300;
53      data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
54      data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList());
55      data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
56
57      List<List<double>> testData = new List<List<double>>() {
58        SequenceGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList(),
59        SequenceGenerator.GenerateSteps( 0.95m, 2.05m, 0.1m).Select(v => (double)v).ToList(),
60        SequenceGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList()
61      };
62
63      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
64
65      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
66        data[i].AddRange(combinations[i]);
67      }
68
69      double x1, x2, x3;
70      List<double> results = new List<double>();
71      for (int i = 0; i < data[0].Count; i++) {
72        x1 = data[0][i];
73        x2 = data[1][i];
74        x3 = data[2][i];
75        results.Add(30 * ((x1 - 1) * (x3 - 1)) / (Math.Pow(x2, 2) * (x1 - 10)));
76      }
77      data.Add(results);
78
79      return data;
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.