[4379] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Core;
|
---|
| 23 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 24 | using HeuristicLab.Parameters;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using System.Collections.Generic;
|
---|
[4752] | 28 | using HeuristicLab.Common;
|
---|
[4379] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.VehicleRouting.Encodings.Zhu {
|
---|
| 31 | [Item("ZhuHeuristicCrossover2", "The Zhu Heuristic Crossover (Version 2). It is implemented as described in Zhu, K.Q. (2000). A New Genetic Algorithm For VRPTW. Proceedings of the International Conference on Artificial Intelligence.")]
|
---|
| 32 | [StorableClass]
|
---|
| 33 | public sealed class ZhuHeuristicCrossover2 : ZhuCrossover {
|
---|
| 34 | [StorableConstructor]
|
---|
| 35 | private ZhuHeuristicCrossover2(bool deserializing) : base(deserializing) { }
|
---|
| 36 |
|
---|
| 37 | public ZhuHeuristicCrossover2()
|
---|
| 38 | : base() {
|
---|
| 39 | }
|
---|
| 40 |
|
---|
[4752] | 41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 42 | return new ZhuHeuristicCrossover2(this, cloner);
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | private ZhuHeuristicCrossover2(ZhuHeuristicCrossover2 original, Cloner cloner)
|
---|
| 46 | : base(original, cloner) {
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[4379] | 49 | protected override ZhuEncoding Crossover(IRandom random, ZhuEncoding parent1, ZhuEncoding parent2) {
|
---|
| 50 | List<int> p1 = new List<int>(parent1);
|
---|
| 51 | List<int> p2 = new List<int>(parent2);
|
---|
| 52 |
|
---|
| 53 | ZhuEncoding child = parent2.Clone() as ZhuEncoding;
|
---|
| 54 |
|
---|
[6771] | 55 | if (parent1.Length != parent2.Length)
|
---|
| 56 | return child;
|
---|
| 57 |
|
---|
[4379] | 58 | int breakPoint = random.Next(child.Length);
|
---|
| 59 | int i = breakPoint;
|
---|
| 60 | int predecessor = breakPoint - 1;
|
---|
| 61 | if (predecessor < 0)
|
---|
| 62 | predecessor = predecessor + child.Length;
|
---|
| 63 |
|
---|
| 64 | int parent1Index = i;
|
---|
| 65 | int parent2Index = i;
|
---|
| 66 |
|
---|
| 67 | while (i != predecessor) {
|
---|
| 68 | if (i == breakPoint) {
|
---|
| 69 | child[i] = p1[parent1Index];
|
---|
| 70 |
|
---|
| 71 | p1.Remove(child[i]);
|
---|
| 72 | if (parent1Index >= p1.Count)
|
---|
| 73 | parent1Index = 0;
|
---|
| 74 |
|
---|
| 75 | p2.Remove(child[i]);
|
---|
| 76 | if (parent2Index >= p2.Count)
|
---|
| 77 | parent2Index = 0;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | if (ProblemInstance.GetDistance(
|
---|
[6851] | 81 | child[i] + 1, p1[parent1Index] + 1, child)
|
---|
[4379] | 82 | <
|
---|
| 83 | ProblemInstance.GetDistance(
|
---|
[6851] | 84 | child[i] + 1, p2[parent2Index] + 1, child)) {
|
---|
[4379] | 85 | child[(i + 1) % child.Length] = p1[parent1Index];
|
---|
| 86 | } else {
|
---|
| 87 | child[(i + 1) % child.Length] = p2[parent2Index];
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | p1.Remove(child[(i + 1) % child.Length]);
|
---|
| 91 | if (parent1Index >= p1.Count)
|
---|
| 92 | parent1Index = 0;
|
---|
| 93 |
|
---|
| 94 | p2.Remove(child[(i + 1) % child.Length]);
|
---|
| 95 | if (parent2Index >= p2.Count)
|
---|
| 96 | parent2Index = 0;
|
---|
| 97 |
|
---|
| 98 | i = (i + 1) % child.Length;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | return child;
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 | }
|
---|