1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics.Contracts;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Threading.Tasks;
|
---|
7 | using HeuristicLab.Common;
|
---|
8 | using HeuristicLab.Core;
|
---|
9 | using HeuristicLab.Data;
|
---|
10 | using HeuristicLab.Parameters;
|
---|
11 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
12 |
|
---|
13 | namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression.Policies {
|
---|
14 | [StorableClass]
|
---|
15 | [Item("EpsilonGreedy", "Epsilon greedy policy with parameter eps to balance between exploitation and exploration")]
|
---|
16 | public class EpsilonGreedy : PolicyBase {
|
---|
17 | private class ActionStatistics : IActionStatistics {
|
---|
18 | public double SumQuality { get; set; }
|
---|
19 | public double AverageQuality { get { return SumQuality / Tries; } }
|
---|
20 | public int Tries { get; set; }
|
---|
21 | public bool Done { get; set; }
|
---|
22 | }
|
---|
23 | private List<int> buf = new List<int>();
|
---|
24 |
|
---|
25 | public IFixedValueParameter<DoubleValue> EpsParameter {
|
---|
26 | get { return (IFixedValueParameter<DoubleValue>)Parameters["Eps"]; }
|
---|
27 | }
|
---|
28 |
|
---|
29 | public double Eps {
|
---|
30 | get { return EpsParameter.Value.Value; }
|
---|
31 | set { EpsParameter.Value.Value = value; }
|
---|
32 | }
|
---|
33 |
|
---|
34 | [StorableConstructor]
|
---|
35 | protected EpsilonGreedy(bool deserializing) : base(deserializing) { }
|
---|
36 | protected EpsilonGreedy(EpsilonGreedy original, Cloner cloner)
|
---|
37 | : base(original, cloner) {
|
---|
38 | }
|
---|
39 | public EpsilonGreedy()
|
---|
40 | : base() {
|
---|
41 | Parameters.Add(new FixedValueParameter<DoubleValue>("Eps", "Rate of random selection 0 (greedy) <= eps <= 1 (random)", new DoubleValue(0.1)));
|
---|
42 | }
|
---|
43 |
|
---|
44 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
45 | return new EpsilonGreedy(this, cloner);
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override int Select(IEnumerable<IActionStatistics> actions, IRandom random) {
|
---|
49 | return Select(actions, random, Eps, buf);
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override void Update(IActionStatistics action, double q) {
|
---|
53 | var a = action as ActionStatistics;
|
---|
54 | a.SumQuality += q;
|
---|
55 | a.Tries++;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IActionStatistics CreateActionStatistics() {
|
---|
59 | return new ActionStatistics();
|
---|
60 | }
|
---|
61 |
|
---|
62 | private static int Select(IEnumerable<IActionStatistics> actions, IRandom rand, double c, IList<int> buf) {
|
---|
63 | buf.Clear();
|
---|
64 | if (rand.NextDouble() >= c) {
|
---|
65 | // select best
|
---|
66 | var bestQ = double.NegativeInfinity;
|
---|
67 | int aIdx = -1;
|
---|
68 | foreach (var a in actions) {
|
---|
69 | ++aIdx;
|
---|
70 | if (a.Done) continue;
|
---|
71 | var actionQ = a.Tries > 0 ? a.AverageQuality : double.PositiveInfinity; // always try unvisited actions first
|
---|
72 | if (actionQ > bestQ) {
|
---|
73 | buf.Clear();
|
---|
74 | buf.Add(aIdx);
|
---|
75 | bestQ = actionQ;
|
---|
76 | } else if (actionQ >= bestQ) {
|
---|
77 | buf.Add(aIdx);
|
---|
78 | }
|
---|
79 | }
|
---|
80 | return buf[rand.Next(buf.Count)];
|
---|
81 | } else {
|
---|
82 | // random selection
|
---|
83 | int aIdx = -1;
|
---|
84 | foreach (var a in actions) {
|
---|
85 | ++aIdx;
|
---|
86 | if (a.Done) continue;
|
---|
87 | buf.Add(aIdx);
|
---|
88 | }
|
---|
89 | return buf[rand.Next(buf.Count)];
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|