Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Scheduling/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs @ 6219

Last change on this file since 6219 was 5942, checked in by mkommend, 14 years ago

#1453: Renamed IOnlineEvaluator to IOnlineCalculator

File size: 8.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Optimization;
32using System;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
35  /// <summary>
36  /// Represents a symbolic classification model
37  /// </summary>
38  [StorableClass]
39  [Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
40  public class SymbolicDiscriminantFunctionClassificationModel : SymbolicDataAnalysisModel, ISymbolicDiscriminantFunctionClassificationModel {
41
42    [Storable]
43    private double[] thresholds;
44    public IEnumerable<double> Thresholds {
45      get { return (IEnumerable<double>)thresholds.Clone(); }
46      private set { thresholds = value.ToArray(); }
47    }
48    [Storable]
49    private double[] classValues;
50    public IEnumerable<double> ClassValues {
51      get { return (IEnumerable<double>)classValues.Clone(); }
52      private set { classValues = value.ToArray(); }
53    }
54    [Storable]
55    private double lowerEstimationLimit;
56    public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
57    [Storable]
58    private double upperEstimationLimit;
59    public double UpperEstimationLimit { get { return upperEstimationLimit; } }
60
61    [StorableConstructor]
62    protected SymbolicDiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
63    protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
64      : base(original, cloner) {
65      classValues = (double[])original.classValues.Clone();
66      thresholds = (double[])original.thresholds.Clone();
67      lowerEstimationLimit = original.lowerEstimationLimit;
68      upperEstimationLimit = original.upperEstimationLimit;
69    }
70    public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
71      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
72      : base(tree, interpreter) {
73      thresholds = new double[] { double.NegativeInfinity };
74      classValues = new double[] { 0.0 };
75      this.lowerEstimationLimit = lowerEstimationLimit;
76      this.upperEstimationLimit = upperEstimationLimit;
77    }
78
79    public override IDeepCloneable Clone(Cloner cloner) {
80      return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
81    }
82
83    public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
84      var classValuesArr = classValues.ToArray();
85      var thresholdsArr = thresholds.ToArray();
86      if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
87
88      this.classValues = classValuesArr;
89      this.thresholds = thresholdsArr;
90      OnThresholdsChanged(EventArgs.Empty);
91    }
92
93    public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
94      return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
95        .LimitToRange(lowerEstimationLimit, upperEstimationLimit);
96    }
97
98    public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
99      foreach (var x in GetEstimatedValues(dataset, rows)) {
100        int classIndex = 0;
101        // find first threshold value which is larger than x => class index = threshold index + 1
102        for (int i = 0; i < thresholds.Length; i++) {
103          if (x > thresholds[i]) classIndex++;
104          else break;
105        }
106        yield return classValues.ElementAt(classIndex - 1);
107      }
108    }
109
110    #region events
111    public event EventHandler ThresholdsChanged;
112    protected virtual void OnThresholdsChanged(EventArgs e) {
113      var listener = ThresholdsChanged;
114      if (listener != null) listener(this, e);
115    }
116    #endregion
117
118    public static void Scale(SymbolicDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData) {
119      var dataset = problemData.Dataset;
120      var targetVariable = problemData.TargetVariable;
121      var rows = problemData.TrainingIndizes;
122      var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
123      var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
124      double alpha;
125      double beta;
126      OnlineCalculatorError errorState;
127      OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState);
128      if (errorState != OnlineCalculatorError.None) return;
129
130      ConstantTreeNode alphaTreeNode = null;
131      ConstantTreeNode betaTreeNode = null;
132      // check if model has been scaled previously by analyzing the structure of the tree
133      var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
134      if (startNode.GetSubtree(0).Symbol is Addition) {
135        var addNode = startNode.GetSubtree(0);
136        if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
137          alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
138          var mulNode = addNode.GetSubtree(0);
139          if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
140            betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
141          }
142        }
143      }
144      // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
145      if (alphaTreeNode != null && betaTreeNode != null) {
146        betaTreeNode.Value *= beta;
147        alphaTreeNode.Value *= beta;
148        alphaTreeNode.Value += alpha;
149      } else {
150        var mainBranch = startNode.GetSubtree(0);
151        startNode.RemoveSubtree(0);
152        var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
153        startNode.AddSubtree(scaledMainBranch);
154      }
155    }
156
157    private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
158      if (alpha.IsAlmost(0.0)) {
159        return treeNode;
160      } else {
161        var node = (new Addition()).CreateTreeNode();
162        var alphaConst = MakeConstant(alpha);
163        node.AddSubtree(treeNode);
164        node.AddSubtree(alphaConst);
165        return node;
166      }
167    }
168
169    private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) {
170      if (beta.IsAlmost(1.0)) {
171        return treeNode;
172      } else {
173        var node = (new Multiplication()).CreateTreeNode();
174        var betaConst = MakeConstant(beta);
175        node.AddSubtree(treeNode);
176        node.AddSubtree(betaConst);
177        return node;
178      }
179    }
180
181    private static ISymbolicExpressionTreeNode MakeConstant(double c) {
182      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
183      node.Value = c;
184      return node;
185    }
186  }
187}
Note: See TracBrowser for help on using the repository browser.