1 |
|
---|
2 | using System;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Drawing;
|
---|
5 | using System.Linq;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views {
|
---|
8 | public class ReingoldTilfordLayoutEngine<T> : ILayoutEngine<T> where T : class {
|
---|
9 | public int NodeWidth { get; set; }
|
---|
10 | public int NodeHeight { get; set; }
|
---|
11 | private int minHorizontalSpacing = 5;
|
---|
12 | public int HorizontalSpacing {
|
---|
13 | get { return minHorizontalSpacing; }
|
---|
14 | set { minHorizontalSpacing = value; }
|
---|
15 | }
|
---|
16 |
|
---|
17 | private int minVerticalSpacing = 5;
|
---|
18 | public int VerticalSpacing {
|
---|
19 | get { return minVerticalSpacing; }
|
---|
20 | set { minVerticalSpacing = value; }
|
---|
21 | }
|
---|
22 |
|
---|
23 | private readonly Func<T, IEnumerable<T>> GetChildren;
|
---|
24 |
|
---|
25 | public ReingoldTilfordLayoutEngine(Func<T, IEnumerable<T>> GetChildren) {
|
---|
26 | this.GetChildren = GetChildren;
|
---|
27 | }
|
---|
28 |
|
---|
29 | public IEnumerable<VisualTreeNode<T>> CalculateLayout(T root) {
|
---|
30 | return CalculateLayout(root, 0, 0);
|
---|
31 | }
|
---|
32 |
|
---|
33 | public IEnumerable<VisualTreeNode<T>> CalculateLayout(T root, float width, float height) {
|
---|
34 | Dictionary<T, LayoutNode<T>> layoutNodeMap = new Dictionary<T, LayoutNode<T>>();
|
---|
35 | var layoutRoot = new LayoutNode<T> { Content = root, Width = NodeWidth, Height = NodeHeight, };
|
---|
36 | layoutRoot.Ancestor = layoutRoot;
|
---|
37 | Expand(layoutRoot, layoutNodeMap);
|
---|
38 |
|
---|
39 | FirstWalk(layoutRoot);
|
---|
40 | SecondWalk(layoutRoot, -layoutRoot.Prelim);
|
---|
41 | NormalizeCoordinates(layoutNodeMap.Values);
|
---|
42 | if (height != 0 && width != 0) {
|
---|
43 | FitToBounds(width, height, layoutNodeMap.Values);
|
---|
44 | Center(width, height, layoutNodeMap.Values);
|
---|
45 | }
|
---|
46 |
|
---|
47 | return layoutNodeMap.Values.Select(x => new VisualTreeNode<T>(x.Content) {
|
---|
48 | Width = (int)Math.Round(x.Width),
|
---|
49 | Height = (int)Math.Round(x.Height),
|
---|
50 | X = (int)Math.Round(x.X),
|
---|
51 | Y = (int)Math.Round(x.Y)
|
---|
52 | });
|
---|
53 | }
|
---|
54 |
|
---|
55 | private void Expand(LayoutNode<T> lRoot, Dictionary<T, LayoutNode<T>> map) {
|
---|
56 | map.Add(lRoot.Content, lRoot);
|
---|
57 | var children = GetChildren(lRoot.Content).ToList();
|
---|
58 | if (!children.Any()) return;
|
---|
59 | lRoot.Children = new List<LayoutNode<T>>(children.Count);
|
---|
60 | for (int i = 0; i < children.Count; ++i) {
|
---|
61 | var node = new LayoutNode<T> {
|
---|
62 | Content = children[i],
|
---|
63 | Number = i,
|
---|
64 | Parent = lRoot,
|
---|
65 | Level = lRoot.Level + 1,
|
---|
66 | Width = NodeWidth,
|
---|
67 | Height = NodeHeight
|
---|
68 | };
|
---|
69 | node.Ancestor = node;
|
---|
70 | lRoot.Children.Add(node);
|
---|
71 | Expand(node, map);
|
---|
72 | }
|
---|
73 | }
|
---|
74 |
|
---|
75 |
|
---|
76 | /// <summary>
|
---|
77 | /// Transform LayoutNode coordinates so that all coordinates are positive and start from (0,0)
|
---|
78 | /// </summary>
|
---|
79 | private static void NormalizeCoordinates(IEnumerable<LayoutNode<T>> nodes) {
|
---|
80 | float xmin = 0, ymin = 0;
|
---|
81 | foreach (var node in nodes) {
|
---|
82 | if (xmin > node.X) xmin = node.X;
|
---|
83 | if (ymin > node.Y) ymin = node.Y;
|
---|
84 | }
|
---|
85 | foreach (var node in nodes) {
|
---|
86 | node.X -= xmin;
|
---|
87 | node.Y -= ymin;
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | private void Center(float width, float height, IEnumerable<LayoutNode<T>> nodes) {
|
---|
92 | // center layout on screen
|
---|
93 | var bounds = Bounds(nodes);
|
---|
94 | float dx = 0, dy = 0;
|
---|
95 | if (width > bounds.Width) { dx = (width - bounds.Width) / 2f; }
|
---|
96 | if (height > bounds.Height) { dy = (height - bounds.Height) / 2f; }
|
---|
97 | foreach (var node in nodes) { node.Translate(dx, dy); }
|
---|
98 | }
|
---|
99 |
|
---|
100 | private void FitToBounds(float width, float height, IEnumerable<LayoutNode<T>> nodes) {
|
---|
101 | var bounds = Bounds(nodes);
|
---|
102 | var myWidth = bounds.Width;
|
---|
103 | var myHeight = bounds.Height;
|
---|
104 |
|
---|
105 | if (myWidth <= width && myHeight <= height) return; // no need to fit since we are within bounds
|
---|
106 |
|
---|
107 | var layers = nodes.GroupBy(node => node.Level, node => node).ToList();
|
---|
108 |
|
---|
109 | if (myWidth > width) {
|
---|
110 | // need to scale horizontally
|
---|
111 | float x = width / myWidth;
|
---|
112 | foreach (var node in layers.SelectMany(g => g)) {
|
---|
113 | node.X *= x;
|
---|
114 | node.Width *= x;
|
---|
115 | }
|
---|
116 | float spacing = minHorizontalSpacing * x;
|
---|
117 | foreach (var layer in layers) {
|
---|
118 | var nodesLayer = layer.ToList();
|
---|
119 | float minWidth = float.MaxValue;
|
---|
120 | for (int i = 0; i < nodesLayer.Count - 1; ++i) { minWidth = Math.Min(minWidth, nodesLayer[i + 1].X - nodesLayer[i].X); }
|
---|
121 | float w = Math.Min(NodeWidth, minWidth - spacing);
|
---|
122 | foreach (var node in nodesLayer) {
|
---|
123 | node.X += (node.Width - w) / 2f;
|
---|
124 | node.Width = w;
|
---|
125 | //this is a simple solution to ensure that the leftmost and rightmost nodes are not drawn partially offscreen due to scaling and offset
|
---|
126 | //this should work well enough 99.9% of the time with no noticeable visual difference
|
---|
127 | if (node.X < 0) {
|
---|
128 | node.Width += node.X;
|
---|
129 | node.X = 0;
|
---|
130 | } else if (node.X + node.Width > width) {
|
---|
131 | node.Width = width - node.X;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|
135 | }
|
---|
136 | if (myHeight > height) {
|
---|
137 | // need to scale vertically
|
---|
138 | float x = height / myHeight;
|
---|
139 | foreach (var node in layers.SelectMany(g => g)) {
|
---|
140 | node.Y *= x;
|
---|
141 | node.Height *= x;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 |
|
---|
147 | /// <summary>
|
---|
148 | /// Returns the bounding box for this layout. When the layout is normalized, the rectangle should be [0,0,xmin,xmax].
|
---|
149 | /// </summary>
|
---|
150 | /// <returns></returns>
|
---|
151 | private RectangleF Bounds(IEnumerable<LayoutNode<T>> nodes) {
|
---|
152 | float xmin = 0, xmax = 0, ymin = 0, ymax = 0;
|
---|
153 | foreach (LayoutNode<T> node in nodes) {
|
---|
154 | float x = node.X, y = node.Y;
|
---|
155 | if (xmin > x) xmin = x;
|
---|
156 | if (xmax < x) xmax = x;
|
---|
157 | if (ymin > y) ymin = y;
|
---|
158 | if (ymax < y) ymax = y;
|
---|
159 | }
|
---|
160 | return new RectangleF(xmin, ymin, xmax + minHorizontalSpacing + NodeWidth, ymax + minVerticalSpacing + NodeHeight);
|
---|
161 | }
|
---|
162 |
|
---|
163 | #region methods specific to the reingold-tilford layout algorithm
|
---|
164 | private void FirstWalk(LayoutNode<T> v) {
|
---|
165 | LayoutNode<T> w;
|
---|
166 | if (v.IsLeaf) {
|
---|
167 | w = v.LeftSibling;
|
---|
168 | if (w != null) {
|
---|
169 | v.Prelim = w.Prelim + minHorizontalSpacing + NodeWidth;
|
---|
170 | }
|
---|
171 | } else {
|
---|
172 | var defaultAncestor = v.Children[0]; // leftmost child
|
---|
173 |
|
---|
174 | foreach (var child in v.Children) {
|
---|
175 | FirstWalk(child);
|
---|
176 | Apportion(child, ref defaultAncestor);
|
---|
177 | }
|
---|
178 | ExecuteShifts(v);
|
---|
179 | var leftmost = v.Children.First();
|
---|
180 | var rightmost = v.Children.Last();
|
---|
181 | float midPoint = (leftmost.Prelim + rightmost.Prelim) / 2;
|
---|
182 | w = v.LeftSibling;
|
---|
183 | if (w != null) {
|
---|
184 | v.Prelim = w.Prelim + minHorizontalSpacing + NodeWidth;
|
---|
185 | v.Mod = v.Prelim - midPoint;
|
---|
186 | } else {
|
---|
187 | v.Prelim = midPoint;
|
---|
188 | }
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | private void SecondWalk(LayoutNode<T> v, float m) {
|
---|
193 | v.X = v.Prelim + m;
|
---|
194 | v.Y = v.Level * (minVerticalSpacing + NodeHeight);
|
---|
195 | if (v.IsLeaf) return;
|
---|
196 | foreach (var child in v.Children) {
|
---|
197 | SecondWalk(child, m + v.Mod);
|
---|
198 | }
|
---|
199 | }
|
---|
200 |
|
---|
201 | private void Apportion(LayoutNode<T> v, ref LayoutNode<T> defaultAncestor) {
|
---|
202 | var w = v.LeftSibling;
|
---|
203 | if (w == null) return;
|
---|
204 | LayoutNode<T> vip = v;
|
---|
205 | LayoutNode<T> vop = v;
|
---|
206 | LayoutNode<T> vim = w;
|
---|
207 | LayoutNode<T> vom = vip.LeftmostSibling;
|
---|
208 |
|
---|
209 | float sip = vip.Mod;
|
---|
210 | float sop = vop.Mod;
|
---|
211 | float sim = vim.Mod;
|
---|
212 | float som = vom.Mod;
|
---|
213 |
|
---|
214 | while (vim.NextRight != null && vip.NextLeft != null) {
|
---|
215 | vim = vim.NextRight;
|
---|
216 | vip = vip.NextLeft;
|
---|
217 | vom = vom.NextLeft;
|
---|
218 | vop = vop.NextRight;
|
---|
219 | vop.Ancestor = v;
|
---|
220 | float shift = (vim.Prelim + sim) - (vip.Prelim + sip) + minHorizontalSpacing + NodeWidth;
|
---|
221 | if (shift > 0) {
|
---|
222 | var ancestor = Ancestor(vim, v) ?? defaultAncestor;
|
---|
223 | MoveSubtree(ancestor, v, shift);
|
---|
224 | sip += shift;
|
---|
225 | sop += shift;
|
---|
226 | }
|
---|
227 | sim += vim.Mod;
|
---|
228 | sip += vip.Mod;
|
---|
229 | som += vom.Mod;
|
---|
230 | sop += vop.Mod;
|
---|
231 | }
|
---|
232 | if (vim.NextRight != null && vop.NextRight == null) {
|
---|
233 | vop.Thread = vim.NextRight;
|
---|
234 | vop.Mod += (sim - sop);
|
---|
235 | }
|
---|
236 | if (vip.NextLeft != null && vom.NextLeft == null) {
|
---|
237 | vom.Thread = vip.NextLeft;
|
---|
238 | vom.Mod += (sip - som);
|
---|
239 | defaultAncestor = v;
|
---|
240 | }
|
---|
241 | }
|
---|
242 |
|
---|
243 | private void MoveSubtree(LayoutNode<T> wm, LayoutNode<T> wp, float shift) {
|
---|
244 | int subtrees = wp.Number - wm.Number; // TODO: Investigate possible bug (if the value ever happens to be zero) - happens when the tree is actually a graph (but that's outside the use case of this algorithm which only works with trees)
|
---|
245 | if (subtrees == 0) throw new Exception("MoveSubtree failed: check if object is really a tree (no cycles)");
|
---|
246 | wp.Change -= shift / subtrees;
|
---|
247 | wp.Shift += shift;
|
---|
248 | wm.Change += shift / subtrees;
|
---|
249 | wp.Prelim += shift;
|
---|
250 | wp.Mod += shift;
|
---|
251 | }
|
---|
252 |
|
---|
253 | private void ExecuteShifts(LayoutNode<T> v) {
|
---|
254 | if (v.IsLeaf) return;
|
---|
255 | float shift = 0;
|
---|
256 | float change = 0;
|
---|
257 | for (int i = v.Children.Count - 1; i >= 0; --i) {
|
---|
258 | var w = v.Children[i];
|
---|
259 | w.Prelim += shift;
|
---|
260 | w.Mod += shift;
|
---|
261 | change += w.Change;
|
---|
262 | shift += (w.Shift + change);
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | private LayoutNode<T> Ancestor(LayoutNode<T> u, LayoutNode<T> v) {
|
---|
267 | var ancestor = u.Ancestor;
|
---|
268 | if (ancestor == null) return null;
|
---|
269 | return ancestor.Parent == v.Parent ? ancestor : null;
|
---|
270 | }
|
---|
271 | #endregion
|
---|
272 | }
|
---|
273 | }
|
---|